Skip to main content
Log in

A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach

Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The implantation behaviour of coronary stents is of great interest to clinicians and engineers alike as in-stent restenosis (ISR) remains a critical issue with the community. ISR is hypothesized to occur for reasons that include injury to the vessel wall caused by stent placement. To reduce the incidence of ISR, improved design and testing of coronary stents is needed. This research aims to facilitate more comprehensive evaluation of stents in the design phase, by generating more realistic arterial environments and corresponding stress states than have been considered heretofore, as a step towards reducing the prevalence of ISR. Furthermore it proposes improvements to the current requirements for coronary stent computational stress analyses as set out by the Food and Drug Administration (FDA). A systematic geometric test-bed with varying levels of arterial curvature and stenosis severity is developed and used to evaluate the implantation behaviour of two stent designs using finite element analysis. A parameter study on atherosclerotic tissue behaviour is also carried out. Results are analysed using tissue damage estimates and lumen gain comparisons for each design. Results indicate that stent design does not have a major impact on lumen gain behaviour but may have an influence on the potential for tissue damage. The level of stenosis in the arterial segments is seen to have a strong impact on the results while the effects of arterial curvature appear to be design dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

References

  1. Ambrose, J. A., S. L. Winters, R. R. Arora, et al. Angiographic evolution of coronary artery morphology in unstable angina. J. Am. Coll. Cardiol. 7:472–478, 1986.

    Article  Google Scholar 

  2. Aoki, J., G. Nakazawa, K. Tanabe, et al. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Cath. Cardiovasc. Interv. 69:380–386, 2007.

    Article  Google Scholar 

  3. Bedoya, J., C. A. Meyer, L. H. Timmins, et al. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.

    Article  Google Scholar 

  4. Brauer, H., J. Stolpmann, H. Hallmann, et al. Measurement and numerical simulation of the dilatation behaviour of coronary stents. Materialwissensch. Werkstofftech. 30:876–885, 1999.

    Article  Google Scholar 

  5. Capelli, C., F. Gervaso, L. Petrini, et al. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31:441–447, 2009.

    Article  Google Scholar 

  6. Chua, S. N. D., B. J. MacDonald, and M. S. J. Hashmi. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J. Mater. Process. Technol. 155–156:1772–1779, 2004.

    Article  Google Scholar 

  7. Dassault Systemes. Abaqus V6.10 Documentation. 2010.

  8. De Beule, M., P. Mortier, S. G. Carlier, et al. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41:383–389, 2008.

    Article  Google Scholar 

  9. de Feyter, P., J. Vos, and B. Rensing. Anti-restenosis trials. Curr. Interv. Cardiol. Rep. 2:326–331, 2000.

    Google Scholar 

  10. Early, M., and D. J. Kelly. The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 224:465–476, 2010.

    Article  Google Scholar 

  11. Etave, F., G. Finet, M. Boivin, et al. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001.

    Article  Google Scholar 

  12. FDA. Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems. http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071863.htm. Accessed 25 Jun 2012.

  13. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  Google Scholar 

  14. Gastaldi, D., S. Morlacchi, R. Nichetti, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9:551–561, 2010.

    Article  Google Scholar 

  15. Gervaso, F., C. Capelli, L. Petrini, et al. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41:1206–1212, 2008.

    Article  Google Scholar 

  16. Gijsen, F., F. Migliavacca, S. Schievano, et al. Simulation of stent deployment in a realistic human coronary artery. BioMed. Eng. Oncoll. 7, 2008. doi:10.1186/1475-925X-7-23.

  17. Gould, K. L., and K. Lipscomb. Effects of coronary stenoses on coronary flow reserve and resistance. Am. J. Cardiol. 34:48–55, 1974.

    Article  Google Scholar 

  18. Gu, L., S. Zhao, A. K. Muttyam, et al. The relation between the arterial stress and restenosis rate after coronary stenting. J. Med. Dev., Trans. ASME. 4, 2010.

  19. Harewood, F., J. Grogan, and P. McHugh. A multiscale approach to failure assessment in deployment for cardiovascular stents. J. Multi Model. 2:1–22, 2010.

    Article  Google Scholar 

  20. Hoffmann, R., G. S. Mintz, G. R. Dussaillant, et al. Patterns and mechanisms of in-stent restenosis: a serial intravascular ultrasound study. Circulation 94:1247–1254, 1996.

    Article  Google Scholar 

  21. Holzapfel, G. A., G. Sommer, C. T. Gasser, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Google Scholar 

  22. Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.

    Article  Google Scholar 

  23. Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.

    Article  Google Scholar 

  24. Holzapfel, G. A., M. Stadler, and C. A. J. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767, 2002.

    Article  Google Scholar 

  25. Jasti, V., E. Ivan, V. Yalamanchili, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 110:2831–2836, 2004.

    Article  Google Scholar 

  26. Kasiri, S., and D. J. Kelly. An argument for the use of multiple segment stents in curved arteries. J. Biomech. Eng. 133, 2011.

  27. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35:1857–1869, 2007.

    Article  Google Scholar 

  28. Kiousis, D. E., A. R. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 37:315–330, 2009.

    Article  Google Scholar 

  29. Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581, 2005.

    Article  Google Scholar 

  30. Lanzer, P., F. J. H. Gijsen, L. D. T. Topoleski, et al. Call for standards in technical documentation of intracoronary stents. Herz 35:27–33, 2010.

    Article  Google Scholar 

  31. Laroche, D., S. Delorme, T. Anderson, et al. Computer prediction of friction in balloon angioplasty and stent implantation. Biomed. Simulat. 4072:1–8, 2006.

    Article  Google Scholar 

  32. Lemos, P. A., F. Saia, J. M. R. Ligthart, et al. Coronary restenosis after sirolimus-eluting stent implantation. Circuation 108:257–260, 2003.

    Article  Google Scholar 

  33. Loree, H. M., A. J. Grodzinsky, S. Y. Park, et al. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.

    Article  Google Scholar 

  34. Lowe, H. C., S. N. Oesterle, and L. M. Khachigian. Coronary in-stent restenosis: current status and future strategies. J. Am. Coll. Cardiol. 39:183–193, 2002.

    Article  Google Scholar 

  35. Martin, D., and F. J. Boyle. Computational structural modelling of coronary stent deployment: a review. Comp. Methods Biomech. Biomed. Eng. 14:331–348, 2011.

    Article  Google Scholar 

  36. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, et al. Computational examination of the effect of material inhomogeneity on the necking of stent struts under tensile loading. J. Appl. Mech. 74:978–989, 2007.

    Article  Google Scholar 

  37. Migliavacca, F., L. Petrini, M. Colombo, et al. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002.

    Article  Google Scholar 

  38. Migliavacca, F., L. Petrini, P. Massarotti, et al. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2, 2004. doi:10.1007/s10237-004-0039-6.

  39. Migliavacca, F., L. Petrini, V. Montanari, et al. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27:13–18, 2005.

    Article  Google Scholar 

  40. Moreno, P. R., I. F. Palacios, M. N. Leon, et al. Histopathologic comparison of human coronary in-stent and post-balloon angioplasty restenotic tissue. Am. J. Cardiol. 84:462–466, 1999.

    Article  Google Scholar 

  41. Mortier, P., M. De Beule, D. Van Loo, et al. Finite element analysis of side branch access during bifurcation stenting. Med. Eng. Phys. 31:434–440, 2009.

    Article  Google Scholar 

  42. Mortier, P., G. A. Holzapfel, M. De Beule, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010.

    Article  Google Scholar 

  43. Ong, A. T. L., R. T. Van Domburg, J. Aoki, et al. Sirolimus-eluting stents remain superior to bare-metal stents at two years: medium-term results from the Rapamycin-Eluting Stent Evaluated at Rotterdam Cardiology Hospital (RESEARCH) registry. J. Am. Coll. Cardiol. 47:1356–1360, 2006.

    Article  Google Scholar 

  44. Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model. Mechanobiol. 2011

  45. Pericevic, I., C. Lally, D. Toner, et al. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31:428–433, 2009.

    Article  Google Scholar 

  46. Petrini, L., F. Migliavacc, and S. Schievano, et al. Computational analyses of intravascular stents. Biomech. Appl. Comput. Asst. Surg. 61–76, 2005.

  47. Pfisterer, M. E. Late stent thrombosis after drug-eluting stent implantation for acute myocardial infarction a new red flag is raised. Circulation 118:1117–1119, 2008.

    Article  Google Scholar 

  48. Serruys, P. W. CAAS 2D/3D QCA Bifurcation analysis approach. In: European Bifurcation Club, EBC. Prague: 2008.

  49. Shaikh, F., R. Maddikunta, M. Djelmami-Hani, et al. Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis? Cath. Cardiovasc. Interv. 71:614–618, 2008.

    Article  Google Scholar 

  50. Takashima, K., T. Kitou, K. Mori, et al. Simulation and experimental observation of contact conditions between stents and artery models. Med. Eng. Phys. 29:326–335, 2007.

    Article  Google Scholar 

  51. Tan, L. B., D. C. Webb, K. Kormi, et al. A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation. Int. J. Cardiol. 78:51–67, 2001.

    Article  Google Scholar 

  52. Thury, A., G. van Langenhove, S. G. Carlier, et al. High shear stress after successful balloon angioplasty is associated with restenosis and target lesion revascularization. Am. Heart J. 144:136–143, 2002.

    Article  Google Scholar 

  53. Timmins, L. H., C. A. Meyer, M. R. Moreno, et al. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. J. Endovasc. Ther. 15:643–654, 2008.

    Article  Google Scholar 

  54. Weissman, N. J., R. L. Wilensky, J.-F. Tanguay, et al. Extent and distribution of in-stent intimal hyperplasia and edge effect in a non-radiation stent population. Am. J. Cardiol. 88:248–252, 2001.

    Article  Google Scholar 

  55. Wentzel, J. J., F. J. H. Gijsen, N. Stergiopulos, et al. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36:681–688, 2003.

    Article  Google Scholar 

  56. Wessely, R. New drug-eluting stent concepts. Nat. Rev. Cardiol. 7:194–203, 2010.

    Article  Google Scholar 

  57. WHO. World Health Report 2004: Changing History. Published Online First: 2004.internal-pdf://World Health Report 2004-1247297536/World Health Report 2004.pdf.

  58. Wu, W., W.-Q. Wang, D.-Z. Yang, et al. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40:2580–2585, 2007.

    Article  MathSciNet  Google Scholar 

  59. Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery—determination of the optimum modelling strategy. J. Biomech. 43:2126–2132, 2010.

    Article  Google Scholar 

  60. Zahedmanesh, H., and C. Lally. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med. Biol. Eng. Comp. 47:385–393, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the Irish Research Council for Science, Engineering and Technology under the Embark Initiative (C. Conway) and the SFI/HEA Irish Centre for High-End Computing for the provision of computational facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Conway.

Additional information

Associate Editor Yi-Ren Woo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conway, C., Sharif, F., McGarry, J.P. et al. A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach. Cardiovasc Eng Tech 3, 374–387 (2012). https://doi.org/10.1007/s13239-012-0104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-012-0104-8

Keywords

Navigation