Skip to main content
Log in

Mean-Field Games and Dynamic Demand Management in Power Grids

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

This paper applies mean-field game theory to dynamic demand management. For a large population of electrical heating or cooling appliances (called agents), we provide a mean-field game that guarantees desynchronization of the agents thus improving the power network resilience. Second, for the game at hand, we exhibit a mean-field equilibrium, where each agent adopts a bang-bang switching control with threshold placed at a nominal temperature. At equilibrium, through an opportune design of the terminal penalty, the switching control regulates the mean temperature (computed over the population) and the mains frequency around the nominal value. To overcome Zeno phenomena we also adjust the bang-bang control by introducing a thermostat. Third, we show that the equilibrium is stable in the sense that all agents’ states, initially at different values, converge to the equilibrium value or remain confined within a given interval for an opportune initial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achdou Y, Camilli F, Capuzzo Dolcetta I (2012) Mean field games: numerical methods for the planning problem. SIAM J Control Optim 50:77–109

    Article  MATH  MathSciNet  Google Scholar 

  2. Achdou Y, Capuzzo Dolcetta I (2010) Mean field games: numerical methods. SIAM J Numer Anal 48:1136–1162

    Article  MATH  MathSciNet  Google Scholar 

  3. Angeli D, Kountouriotis P-A (2012) A stochastic approach to “dynamic-demand” refrigerator control. IEEE Trans Control Syst Technol 20(3):581–592

    Article  Google Scholar 

  4. Bagagiolo F (2001) An infinite horizon optimal control problem for some switching system. Discrete Contin Dyn Syst, Ser B 1(4):443–462

    Article  MATH  MathSciNet  Google Scholar 

  5. Bagagiolo F (2005) Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete Contin Dyn Syst, Ser B 5(2):239–264

    Article  MATH  MathSciNet  Google Scholar 

  6. Bagagiolo F, Bauso D (2011) Objective function design for robust optimality of linear control under state-constraints and uncertainty. ESAIM Control Optim Calc Var 17:155–177

    Article  MATH  MathSciNet  Google Scholar 

  7. Bardi M (2012) Explicit solutions of some linear-quadratic mean field games. Netw Heterog Media 7:243–261

    Article  MATH  MathSciNet  Google Scholar 

  8. Bardi M, Capuzzo Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  9. Başar T, Olsder GJ (1999) Dynamic noncooperative game theory. SIAM series in classics in applied mathematics. SIAM, Philadelphia

    MATH  Google Scholar 

  10. Bauso D, Tembine H, Başar T (2012) Robust mean field games with application to production of an exhaustible resource. In: Proceedings of 7th IFAC symposium on robust control design, Aalborg, Denmark

    Google Scholar 

  11. Bauso D, Zhu Q, Başar T (2012) Mixed integer optimal compensation: decompositions and mean-field approximations. In: Proceedings of 2012 American control conference, Montreal, Montreal, Canada

    Google Scholar 

  12. Callaway DS, Hiskens IA (2011) Achieving controllability of electric loads. Proc IEEE 99(1):184–199

    Article  Google Scholar 

  13. Cardaliaguet P (2012) Notes on mean field games. P.-L. Lions’ lectures, Collège de France. https://www.ceremade.dauphine.fr/~cardalia/MFG100629.pdf

  14. Couillet R, Perlaza SM, Tembine H, Debbah M (2012) Electrical vehicles in the smart grid: a mean field game analysis. IEEE J Sel Areas Commun 30(6):1086–1096

    Article  Google Scholar 

  15. Eto JH, Nelson-Hoffman J, Torres C, Hirth S, Yinger B, Kueck J, Kirby B, Bernier C, Wright R, Barat A, Watson DS (2007) Demand response spinning reserve demonstration. Ernest Orlando Lawrence Berkeley Nat Lab, Berkeley, CA, LBNL Energy, Analysis Dept, 62761

  16. Gellings C, Chamberlin J (1988) Demand-side management: concepts and methods. Fairmont Press, Lilburn

    Google Scholar 

  17. Gueant O, Lasry JM, Lions PL (2010) Mean field games and applications. Paris-Princeton lectures. Springer, Berlin, pp 1–66

    Google Scholar 

  18. Huang MY, Caines PE, Malhamé RP (2003) Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: IEEE conference on decision and control, HI, USA, December, pp 98–103

    Google Scholar 

  19. Huang MY, Caines PE, Malhamé RP (2006) Large population stochastic dynamic games: closed loop Kean–Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–252

    MATH  MathSciNet  Google Scholar 

  20. Huang MY, Caines PE, Malhamé RP (2007) Large population cost-coupled LQG problems with non-uniform agents: individual-mass behaviour and decentralized ϵ-Nash equilibria. IEEE Trans Autom Control 52(9):1560–1571

    Article  Google Scholar 

  21. Jovanovic B, Rosenthal RW (1988) Anonymous sequential games. J Math Econ 17:77–87

    Article  MATH  MathSciNet  Google Scholar 

  22. Lachapelle A, Salomon J, Turinici G (2010) Computation of mean field equilibria in economics. Math Models Methods Appl Sci 20:1–22

    Article  MathSciNet  Google Scholar 

  23. Lasry J-M, Lions P-L (2006) Jeux à champ moyen. I. Le cas stationnaire. C R Math 343(9):619–625

    Article  MATH  MathSciNet  Google Scholar 

  24. Lasry J-M, Lions P-L (2006) Jeux à champ moyen. II. Horizon fini et controle optimal. C R Math 343(10):679–684

    Article  MATH  MathSciNet  Google Scholar 

  25. Lasry J-M, Lions P-L (2007) Mean field games. Jpn J Math 2:229–260

    Article  MATH  MathSciNet  Google Scholar 

  26. Ma Z, Callaway DS, Hiskens IA (2013) Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans Control Syst Technol 21(1):67–78

    Article  Google Scholar 

  27. Louzada Pinto JC (2011) Nash equilibrium stability in stochastic control and mean field games. M.S. thesis, advisor P. Cardaliaguet, CEREMADE. http://www-public.it-sudparis.eu/~louzada/Publications/memoire_proba.pdf

  28. Mathieu JL, Koch S, Callaway DS (2013) State estimation and control of electric loads to manage real-time energy imbalance. IEEE Trans Power Syst 28(1):430–440

    Article  Google Scholar 

  29. Pesenti R, Bauso D (2011) Mean field linear quadratic games with set up costs. In: Proceedings of the int conf on NETwork games, COntrol and OPtimization (NetGCooP 2011), Paris, 12–14 Oct 2011

    Google Scholar 

  30. Selten R (1970) Preispolitik der Mehrprodktenunternehmung in der statischen Theorie. Springer, Berlin

    Book  Google Scholar 

  31. Tembine H (2011) Mean field stochastic games. Notes

  32. Tembine H, Zhu Q, Başar T (2011) Risk-sensitive mean-field stochastic differential games. In: Proceedings of 2011 IFAC world congress, Milan, Italy, August 29–September 2

    Google Scholar 

  33. Tembine H, Le Boudec JY, ElAzouzi R, Altman E (2009) Mean field asymptotic of Markov decision evolutionary games. In: International IEEE conference on game theory for networks (Gamenets 2009)

    Google Scholar 

  34. Visintin A (1994) Differential models of hysteresis. Springer, Heidelberg

    Book  MATH  Google Scholar 

  35. Weintraub GY, Benkard C, Van Roy B (2005) Oblivious equilibrium: a mean field approximation for large-scale dynamic games. Advances in neural information processing systems. MIT Press, Cambridge

    Google Scholar 

  36. Zhu Q, Tembine H, Başar T (2011) Hybrid risk-sensitive mean-field stochastic differential games with application to molecular biology. In: Proceedings of conference on decision and control, Orlando, FL, Dec 14–Dec 16, 2011

    Google Scholar 

  37. Zhu Q, Başar T (2011) A multi-resolution large population game framework for smart grid demand response management. In: Proceedings of intl conference on network games, control and optimization (NETGCOOP 2011), Paris, France, Oct 12–14, 2011

    Google Scholar 

Download references

Acknowledgements

This research was supported by the 2012 “Research Fellow” Program of the Dipartimento di Matematica, Università di Trento and by the PRIN 20103S5RN3 “Robust decision making in markets and organization”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Bauso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagagiolo, F., Bauso, D. Mean-Field Games and Dynamic Demand Management in Power Grids. Dyn Games Appl 4, 155–176 (2014). https://doi.org/10.1007/s13235-013-0097-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-013-0097-4

Keywords

Navigation