Skip to main content
Log in

Effects of Crystallinity and Molecular Weight on the Melting Behavior and Cell Morphology of Expanded Polypropylene in Bead Foam Manufacturing

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The preparation of expended polypropylene (EPP) by a bead foam processing is of great significance for their potential applications, but the development of a facile method adopting the actual manufacturing process remains a great challenge. In this study, a new bead foam processing based on the actual manufacturing process was successfully developed to produce high quality EPP. Suitable processing conditions as well as the effect of the precursor sample properties associated with expanded polypropylene (EPP) manufactured by the bead foam process were investigated. The elongational viscosity was firstly measured using polypropylene (PP) samples with different crystallinities and molecular weights in order to investigate the relevant foaming temperatures. The crystallinity and molecular weight of each sample were controlled by the addition of comonomer, and the melting behavior and cell morphology of the foamed specimens were analyzed utilizing a pilot-scale foaming experiment. Based on our results and observations, a plausible mechanism for formation of high quality EPP was proposed. This work offers a new method for fabricating EPP with a high quality by the bead foam processing. It also provides important information about how the morphology and cell numbers of EPP may be finely controlled by the processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, Cell. Polym., 34, 6 (2015).

    Google Scholar 

  2. P. Guo, Y. Liu, Y. Xu, M. Lu, S. Zhang, and T. Liu, J. Cell Plast., 50, 321 (2014).

    Article  CAS  Google Scholar 

  3. J. Ding, W. Ma, F. Song, and Q. Zhong, J. Appl. Polym. Sci., 130, 2877 (2013).

    Article  CAS  Google Scholar 

  4. Z. Xu, Z. Zhang, Y. Guan, D. Wei, and A. Zheng, J. Cell. Plast., 49, 317 (2013).

    Article  CAS  Google Scholar 

  5. M. Rätzsch, M. Arnold, E. Borsig, H. Bucka, and N. Reichelt, Prog. Polym. Sci., 27, 1195 (2002).

    Article  Google Scholar 

  6. R. Zhang, Y. Xiong, Q. Liu, and S. Hu, J. Appl. Polym. Sci., 134, 45121 (2017).

    Article  CAS  Google Scholar 

  7. S. Doroudiani, C. B. Park, and M. T. Kortschot, Polym. Eng. Sci., 38, 1205 (1998).

    Article  Google Scholar 

  8. D. Raps, N. Hossieny, C. B. Park, and V. Alstädt, Polymer, 56, 5 (2015).

    Article  CAS  Google Scholar 

  9. M. Nofar, Y. Guo, and C. B. Park, Ind. Eng. Chem. Res., 52, 2297 (2013).

    Article  CAS  Google Scholar 

  10. E. Huang, X. Liao, C. Zhao, C. B. Park, Q. Yang, and G. Li, ACS Sustain. Chem. Eng., 4, 1810 (2016).

    Article  CAS  Google Scholar 

  11. Y. Guo, N. Hossieny, R. K. M. Chu, C. B. Park, and N. Zhou, Chem. Eng. J., 214, 180 (2013).

    Article  CAS  Google Scholar 

  12. M. Nofar, A. Ameli, and C. B. Park, Mater. Des., 83, 413 (2015).

    Article  CAS  Google Scholar 

  13. M. Nofar, A. Ameli, and C. B. Park, Polymer, 69, 83 (2015).

    Article  CAS  Google Scholar 

  14. D. C. Li, T. Liu, L. Zhao, and W. K. Yuan, J. Supercrit. Fluids, 60, 89 (2011).

    Article  CAS  Google Scholar 

  15. R. P. Laggendijk, A. H. Hogt, A. Buijtenhuijs, and A. D Gotsis, Polymer, 42, 10035 (2001).

    Article  Google Scholar 

  16. P. Spitael, Christopher, and W. Macosko, Polym. Eng. Sci., 44, 2090 (2004).

    Article  CAS  Google Scholar 

  17. S. Lee, L. Zhu, and J. Maia, Polymer, 70 173 (2015).

    Article  CAS  Google Scholar 

  18. S. Kurzbeck, F. Oster, and H. Münstedt, J. Rheol., 43, 359 (1999).

    Article  CAS  Google Scholar 

  19. C. Gabriel and H. Münstedt, J. Rheol., 47, 619 (2003).

    Article  CAS  Google Scholar 

  20. Q. Liu, X. Sun, H. Li, and S. Yan, Polymer, 54, 4404 (2013).

    Article  CAS  Google Scholar 

  21. S. N. Leung, A. Wong, C. Wang, and C. B. Park, J. Supercrit. Fluids, 63, 187 (2012).

    Article  CAS  Google Scholar 

  22. R. H. Somani, L. Yang, I. Sics, B. S. Hsiao, N. V. Pogodina, H. H. Winter, P. Agarwal, H. Fruitwala, and A. Tsou, Macromol. Symp., 185, 105 (2002).

    Article  CAS  Google Scholar 

  23. N. Hossieny, A. Ameli, and C. B. Park, Ind. Eng. Chem. Res., 52, 8236 (2013).

    Article  CAS  Google Scholar 

  24. Z. Lei, H. Ohyabu, Y. Sato, H. Inomata, and R. L. Smith Jr., J. Supercrit. Fluids, 40, 452 (2007).

    Article  CAS  Google Scholar 

  25. M. Takada, M. Tanigaki, and M. Ohsima, Polym. Eng. Sci., 41, 1938 (2001).

    Article  CAS  Google Scholar 

  26. M. Varma-Nair, P. Y. Handa, A. K. Mehta, and P. Agarwal, Thermochim. Acta, 396, 57 (2003).

    Article  CAS  Google Scholar 

  27. J. Yang, J. Appl. Polym. Sci., 118, 1520 (2010).

    CAS  Google Scholar 

  28. X. Zhu, Y. Li, D. Yan, and Y. Fang, Polymer, 42, 9217 (2001).

    Article  CAS  Google Scholar 

  29. M. Naiki, T. Kikkawa, and Y. Endo, Polymer, 42, 5471 (2001).

    Article  CAS  Google Scholar 

  30. D. Li, T. Liu, L. Zhao, and W. Yuan, Ind. Eng. Chem. Res., 48, 7117 (2009).

    Article  CAS  Google Scholar 

  31. Y. C. Kim, W. Ahn, and C. Y. Kim, Polym. Eng. Sci., 37, 1003 (1997).

    Article  CAS  Google Scholar 

  32. M. Gahleitner, J. Wolfschwenger, C. Bachner, K. Bernreitner, and W. Neißl, J. Appl. Polym. Sci., 61, 649 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mun Ho Kim or O. Ok Park.

Additional information

Publisher’s NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017R1E1A01074445).

The image from this article is used as the cover image of the Volume 28, Issue 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, B.K., Kim, M.H. & Park, O.O. Effects of Crystallinity and Molecular Weight on the Melting Behavior and Cell Morphology of Expanded Polypropylene in Bead Foam Manufacturing. Macromol. Res. 28, 343–350 (2020). https://doi.org/10.1007/s13233-020-8042-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8042-z

Keywords

Navigation