Skip to main content
Log in

Transdermal Hydrogel Composed of Polyacrylic Acid Containing Propolis for Wound Healing in a Rat Model

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of the Carbopol® hydrogel containing propolis (CHP) on wound healing in a rat model. CHP extracts inhibited nitric oxide production induced by lipopolysaccharide in RAW264.7 cells with a concentration-dependent manner. Wounds were prepared through excision to remove full-thickness skin of rats k]and then were covered with CHP. The covered wounds showed significantly rapid contraction and closure. Histological tissue examination indicated that CHP induced advanced granulation tissue formation and re-epithelialization in the wound. These results indicate that CHP may be helpful for the promotion of wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Silva-Carvalho, F. Baltazar, and C. Almeida-Aguiar, Evid. Based Complement. Alternat. Med., 2015, 206439 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. F. Fratini, G. Cilia, S. Mancini, and A. Felicioli, Microbiol. Res., 192, 130–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. S. Huang, C.-P. Zhang, K. Wang, G.-Q. Li, and F.-L. Hu, Molecules, 19, 19610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S.-V. McLennan, J. Bonner, S. Milne, L. Lo, A. Charlton, S. Kurup, J. Jia, D.-K. Yue, and S.-M. Twigg, Wound Repair Regen., 16, 706 (2008).

    Article  PubMed  Google Scholar 

  5. S.-I. Pillai, P. Palsamy, S. Subramanian, and M. Kandaswamy, Pharm. Biol., 48, 1198 (2010).

    Article  Google Scholar 

  6. S.-A. Eming, T. Krieg, and J.-M. Davidson, J. Invest. Dermatol., 127, 514 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. J.-B. Daleprane and D.-S. Abdalla, Evid. Based Complement. Alternat. Med., 2013, 175135 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. C.-G.-F. Chan, K.-W. Cheung, and D.-M.-Y. Sze, Clinc. Rev. Allerg. Immunol., 44, 262 (2013).

    Article  CAS  Google Scholar 

  9. M. Dzialo, J. Mierziak, U. Korzun, M. Preisner, J. Szopa, and A. Kulma, Int. J. Mol. Sci., 17, 160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V.-G. Kadajji and G.-V. Betageri, Polymers, 3, 1972 (2011).

    Article  CAS  Google Scholar 

  11. N. Chirani, L. Yahia, L. Gritsch, F.-L. Motta, S. Chirani, and S. Fare, J. Biomed. Sci., 4, 1 (2015).

    Google Scholar 

  12. R. A-sasutjarit, A. Sirivat, and P. Vayumhasuwan, Pharm. Res., 22, 2134 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. A. Kaler, A.-K. Mittal, M. Katariya, H. Harde, A.-K. Agrawal, S. Jain, and U.-C. Banerjee, J. Nanopart. Res., 16, 2605 (2014).

    Article  CAS  Google Scholar 

  14. D.-K. Asami, Y.-J. Hong, D.-M. Barrett, and A.-E. Mitchell, J. Agric. Food Chem., 51, 1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. C.-C. Chang, M.-H. Yang, H.-M. Wen, and J.-C. Chern, J. Food Drug Anal., 10, 178 (2002).

    CAS  Google Scholar 

  16. M. Öztürk, F. Aydogmus-Öztürk, M.-E. Duru, and G. Topçu, Food Chem., 103, 623 (2007).

    Article  CAS  Google Scholar 

  17. D.-L. Granger, R.-R. Tanintor, K.-S. Boockvar, and Jr J.-B. Hibbs, Methods Ezymol., 268, 142 (1996).

    Article  CAS  Google Scholar 

  18. M.-P. Kähkönen, A.-I. Hopia, H.-J. Vuorela, J.-P. Rauha, K. Pihlaja, T.-S. Jujala, and M. Heinonen, J. Agric. Food Chem., 47, 3954 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. L. Aksoy, E. Kolay, Y. Agilönü, Z. Aslan, and M. Kargioglu, Saudi J. Biol. Sci., 20, 235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L.-C. Lu, Y.-W. Chen, and C.-C. Chou, Int. J. Food Microbiol., 102, 213 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. S. Stepanovic, N. Antic, I. Dakic, and M. Svabic-Vlahovic, Microbiol. Res., 158, 353 (2003).

    Article  PubMed  Google Scholar 

  22. Y.-S. Song, E.-H. Park, G.-M. Hur, Y.-S. Ryu, Y.-M. Kim, and C. Jin, J. Ethnopharmacol., 80, 155 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. N. Paulino, C. Teixeira, R. Martins, A. Scremin, V.-M. Ddirsch, A.-M. Vollmar, S.-R. Abreu, S.-L de Castro, and M.-C. Marcucci, Planta Med., 72, 899 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. V.-R. Pasupuleti, L. Sammugam, N. Ramesh, and S.-H. Gan, Oxid. Med. Cell. Longev., 2017, 1 (2017).

    Article  CAS  Google Scholar 

  25. R. Gharibi, H. Yeganeh, A. Rezapour-Lactoee, and Z.-M. Hassan, ACS Appl. Mater. Interfaces, 7, 24296 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. S.-J. Kim, M.-H. Lim, I.-K. Chun, and Y.-H. Won, Skin Pharmacol., 10, 200 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Moon Lee.

Additional information

Acknowledgments: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1C1A1A02036746 and 2017M2A2A7A0304183 2).

The image from this article is used as the cover image of the Volume 26, Issue 13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, CM. Transdermal Hydrogel Composed of Polyacrylic Acid Containing Propolis for Wound Healing in a Rat Model. Macromol. Res. 26, 1219–1224 (2018). https://doi.org/10.1007/s13233-019-7014-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7014-7

Keywords

Navigation