Skip to main content
Log in

Effective direct writing of hierarchical 3D polymer micromeshes by continuous out-of-plane longitudinal scanning

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Nano-stereolithography, also known as two-photon direct writing is widely used for fabrication of the three-dimensional microstructure with submicron resolution. Heirarchical three-dimensional meshed microstructures are crucial for microelectromechanical systems (MEMS), photonics and biotechnological applications. Routine study for various applications using such structures requires fabrication of many sets of structures. Conventionally such meshed microstructures are constructed through layer-by-layer accumulation with discrete point-to-point laser scanning. This technique is time consuming, leading to long fabrication times placing constraints on practical applications as well as optimization of structures. In this work we propose continuous longitudinal laser scanning method as an effective means for direct writing of hierarchical three-dimensional meshed microstructures. The advantages of continuously longitudinal laser scanning method are explored for its time economy and fabrication effectiveness; a fabrication window is suggested to determine the fabrication parameter easily according to laser power and structural design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.-S. Wu, J. H. Strickler, W. R. Harrell, and W.W. Webb, in Optical/Laser Microlithography V, International Society for Optics and Photonics 1992, pp 776–782.

    Book  Google Scholar 

  2. A. Spangenberg, N. Hobeika, F. Stehlin, J.-P. Malval, F. Wieder, P. Prabhakaran, P. Baldeck, and O. Soppera, Updates in Advanced Lithography, 35 (2013).

    Google Scholar 

  3. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, Prog. Polym. Sci., 33, 631 (2008).

    Article  CAS  Google Scholar 

  4. F. Stellacci, C.A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S.M. Kuebler, S. J. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, Adv. Mater., 14, 194 (2002).

    Article  CAS  Google Scholar 

  5. D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, Appl. Phys. Lett., 90, 079903 (2007).

    Article  Google Scholar 

  6. T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and S. H. Park, Appl. Phys. A: Mater. Sci. Process., 92, 541 (2008).

    Article  CAS  Google Scholar 

  7. S. H. Park, T. W. Lim, D.-Y. Yang, N. C. Cho, and K.-S. Lee, Appl. Phys. Lett., 89, 173133 (2006).

    Article  Google Scholar 

  8. S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett., 22, 132 (1997).

    Article  CAS  Google Scholar 

  9. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature, 412, 697 (2001).

    Article  CAS  Google Scholar 

  10. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, Opt. Express, 15, 3426 (2007).

    Article  CAS  Google Scholar 

  11. M. Emons, K. Obata, T. Binhammer, A. Ovsianikov, B.N. Chichkov, and U. Morgner, Opt. Mater. Express, 2, 942 (2012).

    Article  CAS  Google Scholar 

  12. S. H. Park, T. W. Lim, D. Y. Yang, H. J. Kong, J.Y. Kim and K.-S. Lee, Macromol. Res., 14, 245 (2006).

    Article  CAS  Google Scholar 

  13. S. H. Park, T. W. Lim, D. Y. Yang, Kim, R. H. Kim, and K. S. Lee, Macromol. Res., 14, 559 (2006)

    Article  CAS  Google Scholar 

  14. H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett., 74, 786 (1999).

    Article  CAS  Google Scholar 

  15. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, Nature, 398, 51 (1999).

    Article  CAS  Google Scholar 

  16. M. Farsari and B. N. Chichkov, Nat Photon, 3, 450 (2009).

    Article  CAS  Google Scholar 

  17. M. Straub and M. Gu, Opt. Lett., 27, 1824 (2002).

    Article  CAS  Google Scholar 

  18. J. Serbin, A. Ovsianikov, and B. Chichkov, Opt. Express, 12, 5221 (2004).

    Article  CAS  Google Scholar 

  19. C.-L. Lin, Y.-H. Lee, C.-T. Lin, Y.-J. Liu, J.-L. Hwang, T.-T. Chung, and P. L. Baldeck, Opt. Express, 19, 20604 (2011).

    Article  Google Scholar 

  20. Y. J. Jeong, T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, Opt. Express, 18, 13745 (2010).

    Article  Google Scholar 

  21. S. Maruo, T. Saeki, Y. Kanazawa, and Y. Ichiyanagi, in Micro-Nano-Mechatronics and Human Science, 2008. MHS 2008. International Symposium on, IEEE2008, pp 291–294.

    Google Scholar 

  22. N. Anscombe, Nat Photon, 4, 22 (2010).

    Article  CAS  Google Scholar 

  23. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, J. Tissue. Eng. Regen. Med., 1, 443 (2007).

    Article  CAS  Google Scholar 

  24. F. Claeyssens, E. A. Hasan, A. Gaidukeviciute, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, Langmuir, 25, 3219 (2009).

    Article  CAS  Google Scholar 

  25. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K. P. Schmitz, and A. Haverich, Acta Biomaterialia, 7, 967 (2011).

    Article  CAS  Google Scholar 

  26. M. Medina-Sánchez, L. Schwarz, A. K. Meyer, F. Hebenstreit, and O. G. Schmidt, Nano Lett., 16, 555 (2016).

    Article  Google Scholar 

  27. R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, Macromol. Rapid Commun., 36, 1108 (2015).

    Article  CAS  Google Scholar 

  28. K.-J. Lee, J.-H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, J. Biomed. Nanotechnol., 12, 2125 (2016).

    Article  CAS  Google Scholar 

  29. J. Park, in “Two-Photon Active Functional Materials for Biomedical Applications” Hannam University, Ph.D. Thesis (2015).

    Google Scholar 

  30. W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, J. Appl. Phys., 97, 054907 (2005).

    Article  Google Scholar 

  31. W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, and H.-J. Güntherodt, Appl. Phys. Lett., 84, 4095 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Mid-career Researcher Program (2016R1A2B4008473) through the National Research Foundation of Korea (NRF) funded by the MEST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang-Sup Lee or Dong-Yol Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, C.W., Prabhakaran, P., Son, Y. et al. Effective direct writing of hierarchical 3D polymer micromeshes by continuous out-of-plane longitudinal scanning. Macromol. Res. 25, 1129–1134 (2017). https://doi.org/10.1007/s13233-017-5144-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5144-3

Keywords

Navigation