Skip to main content
Log in

Synthesis of 2,5-furandicarboxylic acid-based heat-resistant polyamides under existing industrialization process

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

As a bio-based material, 2,5-furandicarboxylic acid (FDCA) has been used widely as alternative material to terephthalic acid to produce polyesters or polyamides. In this study, PA10T/10F with melting point higher than 280 °C was produced under existing industrialization process (prepolymerization+solid state polymerization (SSP)), viscosity of which was affected greately by decarboxylation of FDCA. TGIR technique was used to study decarboxylation, and 1,10-decanediamine, CO2, H2O and furan derivates can be found, verifying decarboxylation scheme. 1H NMR, 13C NMR and 2D NMR analysis showed that nearly half of the feeding FDCA monomers decarboxylates during SSP, instead of entering the polyamide chain, leading to the lower furan moiety ratio in polymers compared to that of feeding ratio. However, thermal stability of PA10T/10F polyamide is comparable to PA10T homopolymer, which indicates that FDCA can be a promising base material for heat-resistant polyamide production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.-J. Steffner, Kunstst. Int., 2005, 195 (2005).

    Google Scholar 

  2. C. Zhang, K. Mai, M. Cao, J. Chen, Z. Shi, and S. Jiang, Eng. Plastics Appl., 40, 95 (2012).

    Google Scholar 

  3. M. I. Kohan, in Nylon Plastics Handbook, Hanser Publishers, New York, 1995.

    Google Scholar 

  4. J. K. Fink, in High Performance Polymers, William Andrew Publishing, Norwich, 2008, pp 391–422.

    Book  Google Scholar 

  5. D. J. Kemmish, in Practical Guide to High Performance Engineering PlasticsiSmithers, Shropshire, 2011, pp 47–56.

    Google Scholar 

  6. T. Kashimura, The Plastics, 44, 15 (1998).

    Google Scholar 

  7. Introduction of Stanyl® (http://www.dsm.com/products/stanyl/en_US/home.html).

  8. Vestamid® HT plus M3000 (http://www.vestamid.com/sites/lists/PP-HP/Documents/VESTAMID-HTplus-M3000-Base-polymer-EN.pdf).

  9. Grivory® XE database (http://www.emsgrivory.com/en/ems-material- database/).

  10. Introduction of Vicnyl® (http://www.kingfa.com/siteen/cpml/59/list_1702.html).

  11. S. Kabasci, in Bio-based Plastics: Materials and ApplicationsJohn, Wiley & Sons, Ltd., West Sussex, 2014.

    Google Scholar 

  12. V. Mittal, Scrivener Publishing LLC, Massachusetts, 2012.

    Google Scholar 

  13. H. L. Chum, Noyes Data Corporation, New Jersey, 1991.

    Google Scholar 

  14. M. N. Belgacem and A. Gandini, Elsevier Ltd., Amsterdam, 2008.

    Google Scholar 

  15. B. R. Brown, Q. Rev. Chem. Soc., 5, 131 (1951).

  16. H. Hopff and A. Krieger, Helv. Chim. Acta, 44, 1058 (1961).

    Article  CAS  Google Scholar 

  17. J. A. Moore and W. Bunting, Polym. Sci. Technol., 31, 51 (1985).

    CAS  Google Scholar 

  18. A. Mitiakoudis and A. Gandini, Macromolecules, 24, 830 (1991).

    Article  CAS  Google Scholar 

  19. S. Gharbi, A. Afli, R. E. Gharbi, and A. Gandini, Polym. Int., 50, 509 (2001).

    Article  CAS  Google Scholar 

  20. K. Yutaka, T. Miura, K. Matsuda, and T. Komuro, Canon Kabushiki Kaisha, WO2012132792 (2012).

  21. A. Duursma, R. Aberson, D. D. Smith, J. Flores, M. A. Dam, and G. J. M. Gruter, FURANIX TECHNOLOGIES B.V., WO2015060718A1 (2015).

  22. D. D. Smith, J. Flores, R. Aberson, M. A. Dam, A. Duursma, and G. J. M. Gruter, SOLVAY SPECIALTY POLYMERS USA LLC, US, WO2015059047A1 (2015).

    Google Scholar 

  23. U. Fehrenbacher, O. Grosshardt, K. Kowollik, B. Tübke, N. Dingenouts, and M. Wilhelm, Chem. Ing. Tech., 81, 1829 (2009).

    Article  CAS  Google Scholar 

  24. Y. Jiang, D. Maniar, A. J. J. Woortman, G. O. R. Alberda van Ekenstein, and K. Loos, Biomacromolecules, 16, 3674 (2015).

    Article  CAS  Google Scholar 

  25. C. D. Papaspyrides and S. N. Vouyiouka, in Solid State Polymerization, John Wiley & Sons, Inc., Hoboken, 2009.

    Book  Google Scholar 

  26. Y. K. Endah, S. H. Han, J. H. Kim, N.-K. Kim, W. N. Kim, H.-S. Lee, and H. Lee, J. Appl. Polym. Sci., 133, DOI: 10.1002/app.43391 (2016).

  27. M. Cao, S. Xia, X. Huang, T. Cai, and X. Zeng, Kingfa Science & Technology Co. Ltd., Guangzhou, Guangdong, CN, US20100267923AU (2010).

  28. ISO 307. Plastics — Polyamides — Determination of Viscosity Number, 2007.

  29. ISO 11357-3. Plastics — Differential Scanning Calorimetry (DSC) — Part 3: Determination of Temperature and Enthalpy of Melting and Crystallization, 2011.

  30. T. Novitsky, C. Lange, W. Jarrett, L. Mathias, S. Osborn, R. Ayotte, and S. Manning, J. Appl. Polym. Sci., 116, 3388 (2010).

    CAS  Google Scholar 

  31. T. F. Novitsky, C. A. Lange, L. J. Mathias, S. Osborn, R. Ayotte, and S. Manning, Polymer, 51, 2417 (2010).

    Article  CAS  Google Scholar 

  32. T. F. Novitsky, L. J. Mathias, S. Osborn, R. Ayotte, and S. Manning, Macromol. Symp., 313-314, 90 (2012).

    Article  CAS  Google Scholar 

  33. C. Zhang, X. Huang, X. Zeng, M. Cao, T. Cai, S. Jiang, and Q. Yi, J. Appl. Polym. Sci., 131, DOI: 10.1002/app.40058 (2014).

  34. 2,5-Furandicarboxylic acid ($264.87-25g, from Aladdin) (http://www.aladdin-e.com/us_en/f119129.html).

  35. M. Murakami, O. Togashi, and S. Yamamoto, TORAY IND INC, JP8325376A (1996).

    Google Scholar 

  36. National Institute of Standards and Technology, NIST (http://webbook. nist.gov/chemistry/).

  37. M. Cao, M. Zhang, X. Huang, X. Zeng, Z. Shi, and J. Chen, Petrochem. Technol., 37, 714 (2008).

    Google Scholar 

  38. T. Cousin, Synthesis and Molecular Modelling of Bio-based Polyamides, Ph. D. Thesis, INSA de Lyon, 2013.

    Google Scholar 

  39. T. N. Mitchell and B. Costisella, in NMR - From Spectra to Structures: An Experimental Approach, Springer-Verlag, Berlin Heidelberg, 2007, p 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanhui Zhang.

Additional information

Acknowledgments: The authors acknowledge the financial support of the “Technology New Star of Zhujiang” (2016130) and National Key Technology Support Program (2013BAE02B01).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Zhang, C., He, B. et al. Synthesis of 2,5-furandicarboxylic acid-based heat-resistant polyamides under existing industrialization process. Macromol. Res. 25, 722–729 (2017). https://doi.org/10.1007/s13233-017-5070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5070-4

Keywords

Navigation