Skip to main content
Log in

Chitosan-based composite hydrogels for biomedical applications

  • Review
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

During the last decade, hydrogels prepared from biodegradable polymers, especially natural biodegradable polymers, have been studied extensively for drug delivery and tissue engineering. Chitosan, one of the most abundant natural polymers, is a good candidate and the most widely studied polymer for biomedical applications. To improve physiochemical, biological and other properties of chitosan, many efforts have been made in fabrication of chitosan-based composited hydrogels by physical blending or chemical modifications. Frequently used components include natural polymers, synthetic polymers, inorganic particles and small molecules. In this review, we summarize recent works that are related to chitosan-based composite hydrogels for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rinaudo, Prog. Polym. Sci., 31, 603 (2006).

    Article  CAS  Google Scholar 

  2. M. George and T. E. Abraham, J. Control. Release, 114, 1 (2006).

    Article  CAS  Google Scholar 

  3. P. Baldrick, Regul. Toxicol. Pharmacol., 56, 290 (2010).

    Article  CAS  Google Scholar 

  4. I. A. Sogias, A. C. Williams, and V. V. Khutoryanskiy, Biomacromolecules, 9, 1837 (2008).

    Article  CAS  Google Scholar 

  5. K. D. Yao, A. L. Yao, and Y. J. Yin, Chitosan-Based Hydrogels: Functions and Application, CRC Press, London, 2010.

    Google Scholar 

  6. E. P. Ivanova, K. Bazaka, and R. J. Crawford, New Functional Biomaterials for Medicine and Healthcare, 1st ed., Woodhead Publishing Limited, Cambridge, 2014.

    Google Scholar 

  7. Y. Xu, C. Zhan, L. Fan, L. Wang, and H. Zheng, Int. J. Pharm., 336, 329 (2007).

    Article  CAS  Google Scholar 

  8. Y. H. Lin, H. F. Liang, C. K. Chung, M. C. Chen, and H. W. Sung, Biomaterials, 26, 2105 (2005).

    Article  CAS  Google Scholar 

  9. B. Sarmento, A. Ribeiro, F. Veiga, P. Sampaio, R. Neufeld, and D. Ferreira, Pharm. Res., 24, 2198 (2007).

    Article  CAS  Google Scholar 

  10. K. Baysal, A. Z. Aroguz, Z. Adiguzel, and B. M. Baysal, Int. J. Biol. Macromol., 59, 342 (2013).

    Article  CAS  Google Scholar 

  11. Y. N. Dai, P. Li, J. P. Zhang, A. Q. Wang, and Q. Wei, J. Biomed. Mater. Res. Part B, 86, 493 (2008).

    Article  Google Scholar 

  12. Z. Long, H. Mitomo, and F. Yosh, J. Bioact. Compat. Polym., 23, 319 (2008).

    Article  Google Scholar 

  13. Y. Tang, X. Wang, Y. Li, M. Lei, Y. Du, J. F. Kennedy, and C. J. Knill, Carbohydr. Polym., 82, 833 (2010).

    Article  CAS  Google Scholar 

  14. L. Wang and J. P. Stegemann, Biomaterials, 31, 3976 (2010).

    Article  CAS  Google Scholar 

  15. F. Chicatun, C. E. Pedraza, C. E. Ghezzi, B. Marelli, M. T. Kaartinen, M. D. McKee, and S. N. Nazhat, Biomacromolecules, 12, 2946 (2011).

    Article  CAS  Google Scholar 

  16. X. Wu, L. Black, G. Santacana-Laffitte, and C. W. Patrick, Jr., J. Biomed. Mater. Res. Part A, 81, 59 (2007).

    Article  Google Scholar 

  17. M. Rafat, F. Li, P. Fagerholm, N. S. Lagali, M. A. Watsky, R. Munger, T. Matsuura, and M. Griffith, Biomaterials, 29, 3960 (2008).

    Article  CAS  Google Scholar 

  18. Y. Huang, S. Onyeri, M. Siewe, A. Moshfeghian, and S. V. Madihally, Biomaterials, 26, 7616 (2005).

    Article  CAS  Google Scholar 

  19. X. Huang, Y. Zhang, X. Zhang, L. Xu, X. Chen, and S. Wei, Mater. Sci. Eng. C, 33, 4816 (2013).

    Article  CAS  Google Scholar 

  20. Z. Peng, Z. Peng, and Y. Shen, Polym. Plast. Technol. Eng., 50, 1160 (2011).

    Article  CAS  Google Scholar 

  21. H. Tan, C. R. Chu, K. A. Payne, and K. G. Marra, Biomaterials, 30, 2499 (2009).

    Article  CAS  Google Scholar 

  22. J. C. Sun, H. P. Tan, and X. H. Hu, J. Appl. Polym. Sci., 129, 682 (2013).

    Article  CAS  Google Scholar 

  23. H. Park, B. Choi, J. Hu, and M. Lee, Acta Biomater., 9, 4779 (2013).

    Article  CAS  Google Scholar 

  24. Y. Jiang, X. Meng, Z. Wu, and X. Qi, Carbohydr. Polym., 144, 245 (2016).

    Article  CAS  Google Scholar 

  25. Y. Zu, Y. Zhang, X. Zhao, C. Shan, S. Zu, K. Wang, Y. Li, and Y. Ge, Int. J. Biol. Macromol., 50, 82 (2012).

    Article  CAS  Google Scholar 

  26. E. S. Costa-Júnior, E. F. Barbosa-Stancioli, A. A. P. Mansur, W. L. Vasconcelos, and H. S. Mansur, Carbohydr. Polym., 76, 472 (2009).

    Article  Google Scholar 

  27. H. S. Mansur, E. de S. Costa, A. A. P. Mansur, and E. F. Barbosa-Stancioli, Mater. Sci. Eng. C, 29, 1574 (2009).

    Article  CAS  Google Scholar 

  28. Y. F. Tang, Y. M. Du, X. W. Hu, X. W. Shi, and J. F. Kennedy, Carbohydr. Polym., 67, 491 (2007).

    Article  CAS  Google Scholar 

  29. I. M. Garnica-Palafox, F. M. Sanchez-Arevalo, C. Velasquillo, Z. Y. Garcia-Carvajal, J. Garcia-Lopez, C. Ortega-Sanchez, C. Ibarra, G. Luna-Bárcenas, and L. Solís-Arrieta, J. Biomater. Sci. Polym. Ed., 25, 32 (2014).

    Article  CAS  Google Scholar 

  30. Y. Tang, Y. Du, Y. Li, X. Wang, and X. Hu, J. Biomed. Mater. Res. Part A, 91, 953 (2009).

    Article  Google Scholar 

  31. S. H. Yang, F. H. Lin, J. M. Yang, and K. S. Chen, J. Biomed. Mater. Res. Part B, 83, 304 (2007).

    Article  Google Scholar 

  32. N. Bhattarai, H. R. Ramay, J. Gunn, F. A. Matsen, and M. Zhang, J. Control. Release, 103, 609 (2005).

    Article  CAS  Google Scholar 

  33. J. Wu, W. Wei, L. Y. Wang, Z. G. Su, and G. H. Ma, Biomaterials, 28, 2220 (2007).

    Article  CAS  Google Scholar 

  34. C. Zhong, J. Wu, C. A. Reinhart-King, and C. C. Chu, Acta Biomater., 6, 3908 (2010).

    Article  CAS  Google Scholar 

  35. G. Ma, D. Yang, Q. Li, K. Wang, B. Chen, and J. F. Kennedy, Carbohydr. Polym., 79, 620 (2010).

    Article  CAS  Google Scholar 

  36. Y. Zhang, L. Tao, S. Li, and Y. Wei, Biomacromolecules, 12, 2894 (2011).

    Article  CAS  Google Scholar 

  37. S. Jung, and H. Yi, Langmuir, 28, 17061 (2012).

    Article  CAS  Google Scholar 

  38. C. X. Ding, F. Y. Liu, J. Cheng, J. X. Gu, S. Dan, C. Y. Liu, X. Z. Qu, and Z. Z. Yang, Biomacromolecules, 11, 1043 (2010).

    Article  CAS  Google Scholar 

  39. K. M. Park, S. Y. Lee, Y. K. Joung, J. S. Na, M. C. Lee, and K. D. Park, Acta Biomater., 5, 1956 (2009).

    Article  CAS  Google Scholar 

  40. J. S. Choi and H. S. Yoo, J. Biomed. Mater. Res. Part A, 95, 564 (2010).

    Article  Google Scholar 

  41. J. Y. Kim, W. I. Choi, Y. H. Kim, and G. Tae, Biomaterials, 34, 1170 (2013).

    Article  CAS  Google Scholar 

  42. R. K. Das, N. Kasoju, and U. Bora, Nanomedicine, 6, 153 (2010).

    Article  CAS  Google Scholar 

  43. Y. Zhou, D. Yang, G. Ma, H. Tan, Y. Jin, and J. Nie, Polym. Adv. Technol., 19, 1133 (2008).

    Article  CAS  Google Scholar 

  44. S. Chen, M. Liu, S. Jin, and Y. Chen, J. Appl. Polym. Sci., 98, 1720 (2005).

    Article  CAS  Google Scholar 

  45. J. Han, K. Wang, D. Yang, and J. Nie, Int. J. Biol. Macromol., 44, 229 (2009).

    Article  CAS  Google Scholar 

  46. D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, Carbohydr. Res., 344, 2375 (2009).

    Article  CAS  Google Scholar 

  47. P. Sanpui, A. Murugadoss, P. V. Prasad, S. S. Ghosh, and A. Chattopadhyay, Int. J. Food Microbiol., 124, 142 (2008).

    Article  CAS  Google Scholar 

  48. C. Wang and Y. Huang, New J. Chem., 38, 657 (2014).

    Article  CAS  Google Scholar 

  49. R. Chen, Q. Chen, D. Huo, Y. Ding, Y. Hu, and X. Jiang, Colloids Surf. B, 97, 132 (2012).

    Article  CAS  Google Scholar 

  50. P. Baei, S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, and N. Aghdami, Mater. Sci. Eng. C, 63, 131 (2016).

    Article  CAS  Google Scholar 

  51. S. Hua, H. Yang, W. Wang, and A. Wang, Appl. Clay Sci., 50, 112 (2010).

    Article  CAS  Google Scholar 

  52. K. H. Liu, T. Y. Liu, S. Y. Chen, and D. M. Liu, Acta Biomater., 4, 1038 (2008).

    Article  CAS  Google Scholar 

  53. M. Liu, C. Wu, Y. Jiao, S. Xiong, and C. Zhou, J. Mater. Chem. B, 1, 2078 (2013).

    Article  CAS  Google Scholar 

  54. R. Niranjan, C. Koushik, S. Saravanan, A. Moorthi, M. Vairamani, and N. Selvamurugan, Int. J. Biol. Macromol., 54, 24 (2013).

    Article  CAS  Google Scholar 

  55. J. Wu, Z. G. Su, and G. H. Ma, Int. J. Pharm., 315, 1 (2006).

    Article  CAS  Google Scholar 

  56. K. E. Crompton, J. D. Goud, R.V. Bellamkonda, T. R. Gengenbach, D. I. Finkelstein, M. K. Horne, and J. S. Forsythe, Biomaterials, 28, 441 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Sung Lee.

Additional information

Acknowledgments: This work was supported by the Basic Science Research Program through a National Research Foundation of Korea grant funded by the Korean Government (MEST) (20100027955).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Li, Y. & Lee, D.S. Chitosan-based composite hydrogels for biomedical applications. Macromol. Res. 25, 480–488 (2017). https://doi.org/10.1007/s13233-017-5066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5066-0

Keywords

Navigation