Skip to main content
Log in

Kinetics of in situ robust chain-ends crosslinked polymeric networks formed using catalyst- and solvent-free Huisgen cycloaddition reaction

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

At various temperatures, real time FTIR analysis was introduced to monitor the kinetics of the uncatalyzed Huisgen 1,3-dipolar azide-alkyne cycloaddition (AAC) without media, resulting in in situ robust polymeric networks crosslinked with triazoles at chain-ends. Second-order kinetic analysis was used to determine the rate constants for uncatalyzed AAC reaction. Electron-deficient alkynes carrying an α-carbonyl undergo a fast Huisgen reaction within a few hours without any catalysts, proportional to the temperature. Less electron-deficient alkynes led to the decrease of AAC reaction rate significantly, revealing that the AAC reaction rate depends on the molecular structure of alkynes center

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 28, 15 (2007).

    Article  CAS  Google Scholar 

  2. H. C. Kolb, M. G. Finn, and B. Sharpless, Angew. Chem. Int. Ed., 113, 2056 (2001).

    Article  Google Scholar 

  3. H. C. Kolb, M. G. Finn, and B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001).

    Article  CAS  Google Scholar 

  4. C. J. Hawker and K. L. Wooley, Science, 309, 1200 (2005).

    Article  CAS  Google Scholar 

  5. D. Fournier, R. Hoogenboom, and U. S. Schubert, Chem. Soc. Rev., 36, 1369 (2007).

    Article  CAS  Google Scholar 

  6. V. D.Bock, H. Hiemstra, and J. H. van Maarseveen, Eur. J. Org. Chem., 1, 51 (2006).

    Article  Google Scholar 

  7. H. C. Kolb and K. B. Sharpless, Drug Deliv. Today, 8, 1128 (2003).

    Article  CAS  Google Scholar 

  8. R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clereg, C. F. Perno, A. Karlsson, J. Balzarini, and M. J. Camarasa, J. Med. Chem., 37, 4185 (1994).

    Article  CAS  Google Scholar 

  9. M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingbury, and C. J. Hawker, Chem. Commun., 2774 (2006).

    Google Scholar 

  10. Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, and M. G. Finn, J. Am. Chem. Soc., 125, 3192 (2003).

  11. J. Gierlich, G. A. Burley, P. M. E. Gramlich, D. M. Hammond, and T. Carell, Org. Lett., 8, 3639 (2006).

    Article  CAS  Google Scholar 

  12. S. T. Laughlin, J. M. Baskin, S. L. Amacher, and C. R. Bertozzi, Science, 320, 664 (2008).

    Article  CAS  Google Scholar 

  13. J. A. Johnson, J. M. Baskin, C. R. Bertozzi, J. F.Koberstein, and N. J. Turro, Chem. Commun., 3064 (2008).

    Google Scholar 

  14. J. A. Codelli, J. M. Baskin, N. J. Agard, and C. R. Bertozzi, J. Am. Chem. Soc., 130, 11486 (2008).

    Article  CAS  Google Scholar 

  15. E. M. Sletten and C. R. Bertozzi, Org. Lett., 10, 3097 (2008).

    Article  CAS  Google Scholar 

  16. J. M. Baskin and C. R. Bertozzi, QSAR Comb. Sci., 26, 1211 (2007).

    Article  CAS  Google Scholar 

  17. D. Vuluga, J. Legros, B. Crousse, and D. B. Delpon, Green Chem., 11, 156 (2009).

    Article  CAS  Google Scholar 

  18. N. A. Mcgrath and R. T. Raines, Chem. Sci., 3, 3237 (2012).

    Article  CAS  Google Scholar 

  19. S. Borukhova, T. Noël, B. Metten, E. de Vos, and V. Hessel, ChemSusChem, 6, 2220 (2013).

    Article  CAS  Google Scholar 

  20. C. R. Becer, R. Hoogenboom, and U. S. Schubert, Angew. Chem. Int. Ed., 48, 2 (2009).

    Article  Google Scholar 

  21. S. Sawoo, P. Dutta, A. Chakraborty, R. Mukhopadhyay, O. Bouloussa, and A. Sarkar, Chem. Commun., 5957 (2008).

    Google Scholar 

  22. S. S. van Berkel, A. J. Dirks, S. A. Meeuwissen, D. L. L. Pingen, O. C. Boerman, P. Laverman, F. L. van Delft, J. J. L. Cornelissen, and F. P. J. Rutjes, Chem BioChem, 9, 1805 (2008).

    CAS  Google Scholar 

  23. F. Shi, J. P. Waldo, Y. Chen, and R. C. Larock, Org. Lett., 10, 2409 (2008).

    Article  CAS  Google Scholar 

  24. J. Hong, Q. Luo, and B. K. Shah, Biomacromolecules, 11, 2960 (2010).

    Article  CAS  Google Scholar 

  25. D. Wang, N. Li, M. Zhao, W. Shi, C. Ma, and B. Chen, Green Chem., 12, 2120 (2010).

    Article  CAS  Google Scholar 

  26. H. Kang, H. J. Lee, J. C. Park, H. Song, and K. H. Park, Top. Catal., 53, 523 (2010).

    Article  CAS  Google Scholar 

  27. R. Thorwirth, A. Stolle, B. Ondruschka, A. Wild, and U. S. Schubert, Chem. Commun., 47, 4370 (2011).

    Article  CAS  Google Scholar 

  28. R. Banerjee, S. Maiti, and D. Dhara, Green Chem., 16, 1365 (2014).

    Article  CAS  Google Scholar 

  29. T. Keicher, W. Kuglstatter, S. Eisele, T. Wetzel, and H. Krause, Propellants, Explos. Pyrotech., 34, 210 (2009).

    Article  CAS  Google Scholar 

  30. B. S. Min, Y. C. Park, and J. C. Yoo, Propellants, Explos. Pyrotech., 37, 59 (2012).

    Article  CAS  Google Scholar 

  31. S. K. Reshmi, K. P. Vijayalakshmi, D. Thomas, E. Arunan, and C. P. R. Nair, Propellants, Explos. Pyrotech., 38, 525 (2013).

    Article  CAS  Google Scholar 

  32. B. S. Min, Y. C. Park, and J. C. Yoo, Macromol. Res., 20, 429 (2012).

    Article  CAS  Google Scholar 

  33. D. H. Lee, K. T. Kim, Y. Jang, S. Lee, H. B. Jeon, H. Paik, B. S. Min, and W. Kim, J. Appl. Polym. Sci., 15, 131 (2014).

    Google Scholar 

  34. A. Omrani, L. C. Simon, A. A. Rostami, and M. Ghaemy, Int. J. Chem. Kinet., 40, 663 (2008).

    Article  CAS  Google Scholar 

  35. B. S. Min, H. B. Jeon, T. W. Jeong, and S. Y. Kim, Polym. Chem., 6, 7914 (2015).

    Google Scholar 

  36. R. Huisgen, J. Org. Chem., 33, 2291 (1968).

    Article  Google Scholar 

  37. K. N. Houk, J. Sims, R. E. Duke, R. W. Strozier, and J. K. George, J. Am. Chem. Soc., 95, 7287 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Youl Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, B.S., Kim, S.Y. Kinetics of in situ robust chain-ends crosslinked polymeric networks formed using catalyst- and solvent-free Huisgen cycloaddition reaction. Macromol. Res. 25, 249–254 (2017). https://doi.org/10.1007/s13233-017-5038-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5038-4

Keywords

Navigation