Skip to main content
Log in

Properties in aqueous solution of homo- and copolymers of vinylphosphonic acid derivatives obtained by UV-curing

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Vinylphosphonic acid is homopolymerized with dimethylvinylphosphonate by radical polymerization using using UV light and photoinitiator Darocur 4265 (3 wt%). The molar ratio between vinylphosphonic acid and dimethylvinylphosphonate is varied between 1:1 and 4:1, respectively. The obtained homopolymer of vinylphosphonic acid and copolymers are characterized by Fourier transform infrared spectroscopy (FTIR), thermal analysis and size exclusion chromatography - multi angle laser light scattering. The polymerization by UV light is efficient and an average molar mass of 34,200 g/mol is obtained for poly(vinylphosphonic acid) and in the range from 12,700 to 19,120 g/mol for copolymers, which also have a good thermal stability until 320 °C. The polymers structure allows the formation of random coil conformation. The copolymers are tested as inhibitors against corrosion of iron in NaCl aqueous solution, and, as a result, it was shown that these copolymers exhibit promising anticorrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Macarie and G. Ilia, Progr. Polym. Sci., 35, 1078 (2010).

    Article  CAS  Google Scholar 

  2. L. W. Becker, B. Laboratories, Inc., US Patent 4446046 (1984).

  3. E. Neofotistou and K. D. Demadis, Int. J. Corros. Scale Inhib., 32, 8 (2014).

    Google Scholar 

  4. M. A. Kelland, Production Chemicals for the Oil and Gas Industry, 2nd ed. CRC Press, Boca Raton, 2015.

    Google Scholar 

  5. J. van den Brand, S. van Gils, P. C. J. Beentjes, H. Terryn, V. Sivel, and J. H. W. de Wit, Prog. Org. Coat., 51, 339 (2004).

    Article  CAS  Google Scholar 

  6. S. U. Celik and A. Bozkurt, Macromol. Chem. Phys., 214, 486 (2013).

    Article  CAS  Google Scholar 

  7. B. Bingol and P. Jannasch, in Phosphorus-Based Polymers- From Synthesis to Applications, S. Monge and G. David, Eds., 1st ed., Royal Society of Chemistry, Cambridge, 2014, p 271.

  8. J. Parvole and P. Jannasch, Macromolecules, 41, 3893 (2008).

    Article  CAS  Google Scholar 

  9. B. L. Rivas, E. Pereira, P. Gallegos, D. Homper, and K. E. Geckeler, J. App. Polym. Sci., 92, 2917 (2004).

  10. C. D. Abueva and B. T. Lee, Int. J. Biol. Macromol., 64, 94 (2014).

    Article  Google Scholar 

  11. J. D. Kretlow, M. C. Hacker, L. Klouda, B. B. Ma, and A. G. Mikos, Biomacromolecules, 11, 797 (2010).

    Article  CAS  Google Scholar 

  12. E.-H. Kim, S.-H. Park, S.-Y. Chi, H.-D. Woo, Y. Heo, Y. Ito, D.-K. Han, J.-W. Nah, and T.-I. Son, Macromol. Res., 24, 99 (2016).

    Article  CAS  Google Scholar 

  13. G. O. Adusei, S. Deb, and J. W. Nicholson, Dent. Mater., 21, 491 (2005).

    Article  CAS  Google Scholar 

  14. V. H. W. Khouw-Liu, H. M. Anstice, and G. J. Pearson, J. Dent., 27, 351 (1999).

    Article  CAS  Google Scholar 

  15. B. Bingol, W. Meyer, M. Wagner, and G. Wegner, Macromol. Rapid Commun., 27, 1719 (2006).

    Article  Google Scholar 

  16. C. Queffélec, M. Petit, P. Janvier, D. A. Knight, and B. Bujoli, Chem. Rev., 112, 3777 (2012).

    Article  Google Scholar 

  17. H. Vahabi, L. Ferry, C. Longuet, R. Sonnier, C. Negrell-Guirao, G. David, and J.-M. Lopez-Cuesta, Eur. Polym. J., 48, 604 (2012).

    Article  CAS  Google Scholar 

  18. F. Milleta, R. Auvergne, S.Caillol, G. David, A. Manseri, and N. Pebere, Progr. Org. Coat., 77, 285 (2014).

    Article  Google Scholar 

  19. T. Sato, M. Hasegawa, M. Seno, and T. Hirano, J. Appl. Polym. Sci., 109, 3746 (2008).

    Article  CAS  Google Scholar 

  20. A. Pasternak, I. Felhosi, Z. Kerestztes, E. Kalman, Mater. Sci. Forum, 239, 537 (2007).

    Google Scholar 

  21. J. G. Van Alsten, Langmuir, 15, 7605 (1999).

  22. A. Pasternak, I. Felhosi, Z. Paszti, E. Kuzmann, A.Vertes, E. Kalman, and E. Niykos, Electrochim. Acta, 55, 804 (2010).

    Article  Google Scholar 

  23. B. H. Zimm, J. Chem. Phys., 16, 1093 (1948).

    Article  CAS  Google Scholar 

  24. P. J. Wyatt, Anal. Chim. Acta, 272, l (1993).

    Google Scholar 

  25. V. Simulescu, J.Mondek, M. Kalina, and M. Pekar, Polym. Degrad. Stab., 111, 257 (2015).

    Article  CAS  Google Scholar 

  26. J. Mondek, M. Kalina, V. Simulescu, and M. Pekar, Polym. Degrad. Stab., 120, 107 (2015).

    Article  CAS  Google Scholar 

  27. L. C. Thomas, The Identification of Functional Groups in Organophosphorus Compounds, Academic Press, London, 1974.

    Google Scholar 

  28. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, Wiley, New York, 2004.

    Book  Google Scholar 

  29. R. Mendichi, in Encyclopedia of Chromatography, J. Cazes, Ed., 2nd ed., CRC Press, Boca Raton, Vol. 1, 2005, p 1419.

  30. C. C. Han, Polymer, 20, 1083 (1979).

    Article  CAS  Google Scholar 

  31. S. E. Harding, in Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe, and J. C. Horton, Eds., Royal Society of Chemistry, Cambridge, 1992, p 495.

  32. P. C. Hiemenz and L. P. Timothy, Polymer Chemistry, 2nd ed., CRC Press, Boca Raton, 2007.

    Google Scholar 

  33. A. Kaltbeitzel, S. Schauff, H. Steininger, B. Bingol, G. Brunklaus, and W. H. Meyer, Solid State Ionics, 178, 469 (2007).

    Article  CAS  Google Scholar 

  34. D. D. Jiang, Q. Yoa, M. A. McKinney, and C. A. Wilkie, Polym. Degrad. Stab., 63, 423 (1999).

    Article  CAS  Google Scholar 

  35. U. B. Seemann, J. E. Dengler, and B. Rieger, Angew. Chem., 122, 3567 (2010).

    Article  Google Scholar 

  36. H. Vahabi, L. Ferry, C. Longuet, R. Sonnier, C. Negrell-Guirao, G. David, and J.-M. Lopez-Cuesta, Eur. Polym. J., 48, 604 (2012).

    Article  CAS  Google Scholar 

  37. E. Kalman, I. Felhosi, F. H. Karman, I. Lukovits, J. Telegdi, and G. Palinkas, in Corrosion and Environmental Degradation, Series of Materials Science and Technology: A Comprehensive Treatment, M. Schutze, Ed., Wiley-VCH, Weinheim, Vol. 1, 2000, Ch. 9.

  38. K. D. Demadis, C. Mantzaridis, and P. Lykoudis, Ind. Eng. Chem. Res., 45, 7795 (2006).

    Article  CAS  Google Scholar 

  39. P. Cao, R. Gu, and Z. Tian, Langmuir, 18, 7609 (2002).

    Article  CAS  Google Scholar 

  40. A. C. Bastos, M. L. Zheludkevich, and M. G. S. Ferreira, Electrochim. Acta, 26, 47 (2008).

    Article  CAS  Google Scholar 

  41. H. Amar, A. Tounsib, A. Makayssi, A. Derja, J. Benzakoura, and A. Outzourhit, Corros. Sci., 49, 2936 (2007).

    Article  CAS  Google Scholar 

  42. H. Amar, J. Benzakour, A. Derja, D. Villemin, B. Moreau, and T. Braisaz, Appl. Surf. Sci., 252, 6162 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Ilia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macarie, L., Pekar, M., Simulescu, V. et al. Properties in aqueous solution of homo- and copolymers of vinylphosphonic acid derivatives obtained by UV-curing. Macromol. Res. 25, 214–221 (2017). https://doi.org/10.1007/s13233-017-5026-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5026-8

Keywords

Navigation