Skip to main content
Log in

Covalent immobilization of MSC-affinity peptide on poly(L-lactide-co-ε-caprolactone) copolymer to enhance stem cell adhesion and retention for tissue engineering applications

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Electrospun nanofibers mimicking the extracellular microenvironment have tremendous potential for tissue regeneration applications. However, a lack of bioactive functionalities limits the effective utilization of nanofibers fabricated from synthetic biodegradable polymers. The objective of this study was to conjugate mesenchymal stem cell affinity peptide (EPLQLKM, E7) with star-shaped poly(L-lactide-co-ε-caprolactone) (PLCL) copolymer and to evaluate the potential of this modified polymer to enhance stem cell adhesion and proliferation in vitro. MSCadhesive peptide was covalently conjugated with the hydroxyl functionalities of the star-shaped PLCL copolymer and nanofibers were prepared by mixing appropriate proportions of linear PLCL and E7-conjugated star-shaped PLCL copolymers using electrospinning. Nuclear magnetic resonance and amino acid composition analysis revealed that E7 was successfully conjugated to PLCL copolymers. Nanofibers were smooth and homogenous as examined using scanning electron micrography. Nanofibrous meshes containing PLCL-E7 showed significantly higher cell viability and proliferation compared with the control group. In addition, cells spread well on meshes containing PLCL-E7 compared with the control group. The strategy adopted here may be very useful for designing stem cell adhesive polymeric biomaterials to enhance stem cell-based tissue repair. In addition, E7-immobilized PLCL copolymers can be fabricated into different shapes and structures as needed for various tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gnecchi, Z. Zhang, A. Ni, and V. J. Dzau, Circ. Res., 103, 1204 (2008).

    Article  CAS  Google Scholar 

  2. C. K. Hashi, Y. Zhu, G-Y. Yang, W. L. Young, B. S. Hsiao, K. Wang, B. Chu, and S. Li, PNAS, 104, 11915 (2007).

    Article  CAS  Google Scholar 

  3. M. Shafiq, Y. Jung, and S. H. Kim, Biomaterials, 90, 85 (2016).

    Article  CAS  Google Scholar 

  4. D. E. Discher, D. J. Mooney, and P. W. Zandstra, Science, 324, 1673 (2009).

    Article  CAS  Google Scholar 

  5. A. Leal-Egana, A. Diaz-Cuenca, and A. R. Boccaccini, Adv. Mater., 25, 4049 (2013).

    Article  CAS  Google Scholar 

  6. W. Leong and D. A. Wang, Trends. Biotechnol, 33, 653 (2015).

    Article  CAS  Google Scholar 

  7. U. Hersel, C. Dahman, and H. Kessler, Biomaterials, 24, 4385 (2003).

    Article  CAS  Google Scholar 

  8. M. D. Pierschbacher and E. Ruoslahti. Proc. Natl. Acad. Sci. U.S.A., 81, 5985 (1984).

    Article  CAS  Google Scholar 

  9. B. P. Gray and K. C. Brown. Chem. Rev., 114, 1020 (2014).

    Article  CAS  Google Scholar 

  10. Q. Li, Z. Wang, S. Zhang, W. Zheng, Q. Zhao, J. Zhang, L. Wang, S. Wang, and D. Kong, Mater. Sci. Eng. C: Mater. Biol. Appl., 33, 1646 (2013).

    Article  CAS  Google Scholar 

  11. F. Gelain, S. Panseri, S. Antonini, C. Cunha, M. Donega, J. Lowery, F. Taraballi, G. Cerri, M. Montagna, F. Baldissera, and A. Vescovi, ACS Nano, 5, 227 (2011).

    Article  CAS  Google Scholar 

  12. Z. Shao, X. Zhang, Y. Pi, X. Wang, Z. Jia, J. Zhu, L. Dai, W. Chen, L. Yin, H. Chen, C. Zhou, and Y. Ao, Biomaterials, 33, 3375 (2012).

    Article  CAS  Google Scholar 

  13. Q. Meng, Z. Man, L. Dai, H. Huang, X. Zhang, X. Hu, Z. Shao, J. Zhu, J. Zhang, X. Fu, X. Duan, and Y. Ao, Sci. Rep., 5, 17802 (2015).

    Article  CAS  Google Scholar 

  14. H. Huang, X. Zhang, X. Hu, Z. Shao, J. Zhu, L. Dai, Z. Man, L. Yuan, H. Chen, C. Zhou, and Y. Ao, Biomaterials, 35, 9608 (2014).

    Article  CAS  Google Scholar 

  15. M. Shafiq, Y. Jung, and S. H. Kim, J. Biomed. Mater. Res. A, 103, 2673 (2015).

    Article  CAS  Google Scholar 

  16. M. Shafiq, Y. Jung, and S. H. Kim, Eur. Cell. Mater., 30, 282 (2015).

    CAS  Google Scholar 

  17. M. Shafiq, Y. Jung, and S. H. Kim, J. Biomed. Mater. Res., 104A, 1352 (2016).

    Article  Google Scholar 

  18. Y. M. Shin, Y. B. Lee, S. J. Kim, J. K. Kang, J-C. Park, W. Jang, and H. Shin, Biomacromolecules, 13, 2020 (2012).

    Article  CAS  Google Scholar 

  19. Y. M. Shin, H. Shin, and Y. M. Lim, Macromol. Res., 18, 472 (2010).

    Article  CAS  Google Scholar 

  20. D. A. Barrera, E. Zyistra, P. T. Lansbury, and R. Langer, J. Am. Chem. Soc., 115, 11010 (1993).

    Article  CAS  Google Scholar 

  21. D. Grafahrend, K. H. Heffels, M. V. Beer, P. Gasteier, M. Möller, G. Boehm, P. D. Dalton, and J. Groll, Nat. Mater., 10, 67 (2011).

    Article  CAS  Google Scholar 

  22. D. E. Muylaert, G. C. van Almen, H. Talacua, J. O. Fledderus, J. Kluin, S. I. Hendrikse, J. L. van Dongen, E. Sijbesma, A. W. Bosman, T. Mes, S. H. Thakkar, A. I. Smits, C. V. Bouten, P. Y. Dankers, and M. C. Verhaar, Biomaterials, 76, 187 (2016).

    Article  CAS  Google Scholar 

  23. W. Kuhlman, I. Taniguchi, L. G. Griffith, and A. M. Mayes, Biomacromolecule, 8, 3206 (2007).

    Article  CAS  Google Scholar 

  24. P. P. Kuhl and L. G. Griffith-Cima, Nat. Med., 2, 1022 (1996).

    Article  CAS  Google Scholar 

  25. C. J. Chun, H. J. Lim, K.-Y. Hong, K.-H. Park, and S. C. Song, Biomaterials, 30, 6295 (2009).

    Article  CAS  Google Scholar 

  26. A. Phadke, Y. Hwang, S. H. Kim, S. H. Kim, T. Yamaguchi, and K. Masuda, Eur. Cell. Mater., 25, 114 (2013).

    Article  CAS  Google Scholar 

  27. Z. Man, L. Yin, Z. Shao a, X. Zhang, X. Hu, J. Zhu, L. Dai, H. Huang, L. Yuan, C. Zhou, H. Chen, and Y. Ao, Biomaterials, 35, 5250 (2014).

    Article  CAS  Google Scholar 

  28. J. Fernández, A. Etxeberria, and J. R. Sarasua, J. Mech. Behav. Biomed. Mater., 9, 100 (2012).

    Article  Google Scholar 

  29. M. A. Dobrovolkaia and S. E. Mcneil, Nat. Nanotechnol., 2, 469 (2007).

    Article  Google Scholar 

  30. T. I. Croll, A. J. O’Connor, G. W. Stevens, and J. J. Cooper-White, Biomacromolecules, 5, 463 (2004).

    Article  CAS  Google Scholar 

  31. K. Cai, K. Yao, Y. Cui, Z. Yang, X. Li, H. Xie, T. Qing, and L. Gao, Biomaterials, 23, 1603 (2002).

    Article  CAS  Google Scholar 

  32. J. Yang, J. Bei, and S. Wang, Biomaterials, 23, 2607 (2002).

    Article  CAS  Google Scholar 

  33. P. K. Chu, Y. J. Chen, L. P. Wang, and N. Huang, Mater. Sci. Eng., R: Rep., R36, 143 (2002).

    Article  CAS  Google Scholar 

  34. U. Hersel, C. Dahmen, and H. Kessler, Biomaterials, 24, 4385 (2003).

    Article  CAS  Google Scholar 

  35. C. H. Park, Y. J. Hong, and K. Park, Macromol. Res., 18, 526 (2010).

    Article  CAS  Google Scholar 

  36. W. S. Choi, J. W. Bae, Y. K. Joung, K. D. Park, M. H. Lee, J.-C. Park, and I. K. Kwon, Macromol. Res., 17, 458 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq, M., Kim, S.H. Covalent immobilization of MSC-affinity peptide on poly(L-lactide-co-ε-caprolactone) copolymer to enhance stem cell adhesion and retention for tissue engineering applications. Macromol. Res. 24, 986–994 (2016). https://doi.org/10.1007/s13233-016-4138-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4138-x

Keywords

Navigation