Skip to main content
Log in

Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The capacity of fibrinolytic enzymes to degrade blood clots makes them of high relevance in medicine and in the pharmaceutical industry. In this work, forty-three microorganisms of the genus Bacillus were evaluated for their potential to produce fibrinolytic proteases. Thirty bacteria were confirmed as producers of fibrinolytic enzymes, the best results obtained for the strain Bacillus amyloliquefaciens UFPEDA 485. The optimization of the enzyme production conditions was done by a central composite design (CCD) star 23 that allowed to define the optimal conditions for soybean flour and glucose concentrations and agitation rate. The highest fibrinolytic activity (FA) of 813 U mL–1 and a degradation of blood clot in vitro of 62% were obtained in a medium with 2% (w/v) of soybean flour and 1% (w/v) glucose at 200 rpm after 48 h of cultivation, at pH 7.2 and 37 °C. The obtained fibrinolytic enzyme was characterized biochemically. Fibrinolytic activity was inhibited by PMSF (fluoride methylphenylsulfonyl - C7H7FO2S) 91.52% and EDTA (ethylenediaminetetraacetic acid - C10H16N2O8) 89.4%, confirming to be a serine-metallo protease. The optimum pH and temperature were 7.0 and 37 oC, respectively, and the enzyme was stable for 12 h. The fibrinolytic activity at physiological conditions of this enzyme produced by Bacillus amyloliquefaciens UFPEDA 485, as well as its long term stability, demonstrate that it has suitable characteristics for human and veterinary applications, and promises to be a powerful drug for the treatment of vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Schallmey, A. Singh, and O. P. Ward, Can. J. Microbiol., 50, 1 (2004).

    Article  CAS  Google Scholar 

  2. P. Rathakrishnan and P. Nagarajan, Int. J. ChemTech Res., 3, 1526 (2011).

    CAS  Google Scholar 

  3. S.-H. Choi, K.-S. Whang, J.-S. Park, W.-Y. Choi, and M-H. Yoon, Macromol. Res., 13, 339 (2005).

    Article  CAS  Google Scholar 

  4. T. K. Mukhopadhyay, N. Allison, S. Charlton, M. J. Hudson, B. Hallis, A. King, R. Baker, S. Noonan, J. McGlashan, K. West, M. S. Levy, J. M. Ward, and G. J. Lye, Biochem. Eng. J., 50, 139 (2010).

    Article  CAS  Google Scholar 

  5. C. D. Sumi, B. W. Yang, I.-C. Yeo, and Y. T. Hahm, Can. J. Microbiol., 61, 93 (2015).

    Article  CAS  Google Scholar 

  6. R. Deepak and R. Jayapradha, J. Mycol. Med., 25, 15 (2015).

    Article  Google Scholar 

  7. A. E. Sales, F. A. S. D. Souza, J. A. Teixeira, T. S. Porto, and A. L. F. Porto, Appl. Biochem. Biotechnol., 170, 1676 (2013).

    Article  CAS  Google Scholar 

  8. D. N. A Huy, P. A. Hao, and P. V. Hung, Int. Food Res. J., 23, 326 (2016).

    Google Scholar 

  9. S. Sundararajan, C. N. Kannan, and S. Chittibabu, J. Biosci. Bioeng., 111, 128 (2011).

    Article  CAS  Google Scholar 

  10. M. Jin, W. Chen, W. Huang, L. Rong, and Z. Gao, Acta Pharm. Sin. B, 3, 123 (2013).

    Article  Google Scholar 

  11. J.-H. Choi, K. Sapkota, S.-E. Park, S. Kim, and S.-J. Kim, Biochimie, 95, 1266 (2013).

    Article  CAS  Google Scholar 

  12. E. F. Al-Juamily and B. H. Al-Zaidy, Chem. Sci. Rev. Lett., 2, 256 (2013).

    CAS  Google Scholar 

  13. Y. Uesugi, H. Usuki, M. Iwabuchi, and T. Hatanaka, Enzyme Microb. Technol., 48, 7 (2011).

    Article  CAS  Google Scholar 

  14. D. N. Avhad, S. S. Vanjari, and V. K. Rathod. Am. J. Curr. Microbiol., 1, 1 (2013).

    Google Scholar 

  15. M. Y. Ahn, B. S. Hahn, K. S. Ryu, J. W. Kim, I. Kim, and Y. S. Kim, Thromb. Res., 112, 339 (2003).

    Article  CAS  Google Scholar 

  16. J. He, S. Chen, and J. Gu, FEBS Lett., 518, 2965 (2007).

    Article  Google Scholar 

  17. J. Z. Klafke, M. A. Silva, M. F. Rossato, G. Trevisan, C. I. B. Walker, C. A. M. Leal, D. O. Borges, M. R. C. Schetinger, R. N. Moresco, M. M. M. F. Duarte, A. R. S. Santos, P. R. N. Viecili, and J. Ferreira, Evid.-Based Complement. Alternat. Med., 2012, 1 (2012).

    Article  Google Scholar 

  18. D. W. Kim, K. Sapkota, J. H. Choi, Y. S. Kim, S. Kim, and S. J. Kim, Process Biochem., 48, 340 (2013).

    Article  CAS  Google Scholar 

  19. K. Omura, M. Hitosugi, X. Zhu, M. Ikeda, H. Maeda, and S. Tokudome, J. Pharmacol. Sci., 99, 247, (2005).

    Article  CAS  Google Scholar 

  20. R. Agrebi, N. Hmidet, M. Hajji, N. Ktari, A. Haddar, N. Fakhfakhzouari, and M. Nasri, Appl. Biochem. Biotechnol., 162, 75 (2010).

    Article  CAS  Google Scholar 

  21. A. K. Mukherjee, S. K. Rai, R. Thakur, P. Chattopadhyay, and S. K. Kar, Biochimie, 94, 1300 (2012).

    Article  CAS  Google Scholar 

  22. B. K. Bajaj, N. Sharma, and S. Singh, Biocatal. Agric. Biotechnol., 2, 204 (2013).

    Google Scholar 

  23. V. Kanagasabai and V. Thangavelu, J. Adv. Sci. Res., 4, 13 (2013).

    Article  CAS  Google Scholar 

  24. A. L. F. Porto, G. M. Campos-Takaki, and J. L. Lima Filho, Appl. Biochem. Biotechnol., 60, 115 (1996).

    Article  CAS  Google Scholar 

  25. M. M. Bradford, Anal. Biochem., 72, 248 (1976).

    Article  CAS  Google Scholar 

  26. B. Wu, L. Wu, L. Ruan, M. Ge, and D. Chen, Curr. Microbiol., 58, 522 (2009).

    Article  CAS  Google Scholar 

  27. T. Astrup and S. Mullertz, Arch. Biochem. Biophys., 40, 346 (1952).

    Article  CAS  Google Scholar 

  28. S. Wang, Y. Wu, and T. Liang. N. Biotechnol., 28, 196 (2011).

    Article  CAS  Google Scholar 

  29. B. Chen, J. Huo, Z. He, Q. He, Y. Hao, and Z. Chen. Afr. J. Microbiol. Res., 7, 2001 (2013).

    Article  CAS  Google Scholar 

  30. A. K. Mukherjee and S. K. Rai, N. Biotechnol., 28, 182 (2011).

    Article  CAS  Google Scholar 

  31. J. K. Ki, W. Zhang, and P. Y. Qian, J. Microbiol. Methods, 77, 48 (2009).

    Article  CAS  Google Scholar 

  32. B. K. Bajaj, S. Singh, M. Khullar, K. Singh and S. Bhardwaj, Braz. Arch. Biol. Technol., 57, 653 (2014).

    Article  CAS  Google Scholar 

  33. G. R. Gad, S. Nirmala, and S. Narendar. Int. J. Pharm. Pharm. Sci., 6, 370 (2014).

    Google Scholar 

  34. P. Vijayaraghavan and S. G. P. Vincent. BioMed Res. Int., 2014, 1 (2014).

    Article  Google Scholar 

  35. V. Mohanasrinivasan, C. S. Devi, R. Biswas, F. Paul, M. Mitra, E. Selvarajan, and V. Suganthi, Bangladesh J. Pharmacol., 8, 110 (2013).

    Article  Google Scholar 

  36. K. Heo, K. M. Cho, C. K. Lee, G. M. Kim, J. H. Shin, J. S. Kim, and J. H. Kim, J. Microbiol. Biotechnol., 23, 974 (2013).

    Article  CAS  Google Scholar 

  37. P. M. Mahajan, S. Nayak, and S. S. Lele, J. Biosci. Bioeng., 113, 307 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana América Silva Dantas de Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, F.A.S.D., Sales, A.E., Costa e Silva, P.E. et al. Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens . Macromol. Res. 24, 587–595 (2016). https://doi.org/10.1007/s13233-016-4089-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4089-2

Keywords

Navigation