Skip to main content
Log in

Development of reinforced polylactide composite resin for micro surgery bone plate and screw

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, composites of polylactide (PLA) and hyaluronic acid-chitosan ionic complex (HACS) which are derived from hyaluronic acid (HA) and chitosan (CS), respectively, were prepared to investigate the enhancing effects of their mechanical properties, crystallinity, and biodegradation. To reach reasonable tensile modulus properties such as those in human bone, β-tricalcium phosphate (BCP) was added, which can prevent the stress shielding effect. The addition of reinforcements in the PLA matrix significantly increased the tensile strength and modulus of the PLA composites. To verify the effect of reinforcements on crystallinity behavior and surface morphology, we used differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) to examine dispersion properties. Moreover, an in vitro enzymatic biodegradation test on composites was carried out with esterase from porcine liver at 37 °C in PBS solution (pH 7.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.-T. Lim, R. Auras, and M. Rubio, Prog. Polym. Sci., 33, 11 (2008)

    Article  Google Scholar 

  2. L. S. Nair and C. T. Laurencin, Prog. Polym. Sci., 32, 11 (2007).

    Article  Google Scholar 

  3. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 11 (2004).

    Article  Google Scholar 

  4. M. Hiljanen-Vainio, P. Varpomaa, J. Seppala, and P. Tormala, Macromol. Chem. Phys., 197, 11 (1996).

    Article  Google Scholar 

  5. D. W. Grijpma, A. J. Nijenhuis, P. G. T. Van Wijk, and A. J. Pennings, Polym. Bull., 29, 11 (1992).

    Article  Google Scholar 

  6. L. Mascia and M. Xanthos, Adv. Polym. Technol., 11, 11 (1992).

    Article  Google Scholar 

  7. M. Avella, G. Bogoeva-Gaceva, A. Buzarovska, M. E. Errico, G. Gentile, and A. Grozdanov, J. Appl. Polym. Sci., 108, 11 (2008).

    Article  Google Scholar 

  8. M. S. Huda, L. T. Drzal, M. Misra, and A. K. Mohanty. J. Appl. Polym. Sci., 102, 11 (2006).

    Article  Google Scholar 

  9. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci., 35, 11 (2010).

    Article  Google Scholar 

  10. A. Pei, Q. Zhou, and L. A. Berglund, Compos. Sci. Technol., 70, 11 (2010).

    Article  Google Scholar 

  11. Y. Xiao, D. Li, H. Fan, X. Li, Z. Gu, and X. Zhang, Mater. Lett., 61, 11 (2007).

    Google Scholar 

  12. F. S. Palumbo, G. Pitarresi, D. Mandracchia, G. Tripodo, and G. Giammona, Carbohydrate Polym., 66, 11 (2006).

    Article  Google Scholar 

  13. A. D. Martino, M. Sittinger, and M. V. Risbud, Biomaterials, 26, 11 (2005).

    Article  Google Scholar 

  14. M. Navarro, A. Michiardi, O. Castano, and J. A. Planell, J. R. Soc. Interface, 5, 11 (2008).

    Article  Google Scholar 

  15. T. Kasuga, H. Fujikawa, and Y. Abe, J. Mater. Res., 14, 11 (1999).

    Article  Google Scholar 

  16. H. S. Nam, J. H. An, D. J. Chung, J. H. Kim, and C. P. Chung, Macromol. Res., 14, 11 (2006).

    Google Scholar 

  17. H. S. Nam and D. J. Chung, KOREAN Patent 10-2004-0041736 (2002).

    Google Scholar 

  18. N. Ogata, G. Jimenez, H. Kawai, and T. Ogihara, J. Polym. Sci., Part B: Polym. Phys., 35, 11 (1997).

    Article  Google Scholar 

  19. M. S. Reeve, S. P. McCarthy, M. J. Downey, and R. A. Gross, Macromolecules, 27, 11 (1994).

    Article  Google Scholar 

  20. Y. Tokiwa and B. P. Calabia, Appl. Microbiol. Biotechnol., 72, 11 (2006).

    Article  Google Scholar 

  21. ASTM D 638, ASTM International, West Conshohocken (2010).

  22. H. Y. Cheung, K. T. Lau, Y. F. Pow, Y. Q. Zhao, and D. Hui, Compos. Part B: Eng., 41, 11 (2010).

    Article  Google Scholar 

  23. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, and I. Jasiuk, Mat. Sci. Eng. A: Struct., 393, 11 (2005).

    Article  Google Scholar 

  24. B. L. Shah, S. E. Selke, M. B. Walters, and P. A. Heiden, Polym. Compos., 29, 11 (2008).

    Article  Google Scholar 

  25. A. Ogilvie, R. M. Frank, E. P. Benque, M. Gineste, M. Heughebaert, and J. Hemmerie, J. Periodontal Res., 22, 11 (1987).

    Article  Google Scholar 

  26. F. P. L. Mantia and M. Morreale, Compos. Part A: Appl. Sci. Manuf., 42, 11 (2011).

    Article  Google Scholar 

  27. H. Diao, Y. Si, A. Zhu, L. Ji, and H. Shi, Mater. Sci. Eng. C Mater. Biol. Appl., 32, 11 (2012).

    Article  Google Scholar 

  28. R. Liao, B. Tang, W. Yu, and C. Zhou, J. Appl. Polym. Sci., 104, 11 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong June Chung.

Additional information

The image from this article is used as the cover image of the Volume 24, Issue 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chon, J.W., Jang, I.K., Suh, S.W. et al. Development of reinforced polylactide composite resin for micro surgery bone plate and screw. Macromol. Res. 24, 37–43 (2016). https://doi.org/10.1007/s13233-016-4003-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4003-y

Keywords

Navigation