Skip to main content
Log in

Vegetable oil-based polyols for sustainable polyurethanes

  • Feature Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Vegetable oils (VOs) are one of the most important bio-renewable resources in the chemical industry due to their biodegradability, universal availability and low price. Using VO-based polyols to substitute petroleum-based polyols is considered a prime and novel route towards preparing sustainable polyurethane (PU). In this context, recent progress on preparing VO-based polyols and PUs is briefly summarized in this article. Especially, thiol-ene reactions allow for the synthesis of VO-based polyols with different functionalities in keeping with efficient click chemistry principles. The studies indicated that VO-based polyols and the resulting PUs can be eco-friendly families of industrially important polymers with a low environmental footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Nohra, L. Candy, J.-F. Blanco, C. Guerin, Y. Raoul, and Z. Mouloungui, Macromolecules, 46, 3771 (2013).

    Article  CAS  Google Scholar 

  2. M. Desroches, M. Escouvois, R. Auvergne, S. Caillol, and B. Boutevin, Polym. Rev., 52, 38 (2012).

    Article  CAS  Google Scholar 

  3. S. Miao, P. Wang, Z. Su, and S. Zhang, Acta Biomater., 10, 1692 (2014).

    Article  CAS  Google Scholar 

  4. D. P. Pfister, Y. Xia, and R. C. Larock, ChemSusChem, 4, 703 (2011).

    Article  CAS  Google Scholar 

  5. A. Gandini, Green Chem., 13, 1061 (2011).

    Article  CAS  Google Scholar 

  6. V. Sharma and P. P. Kundu, Prog. Polym. Sci., 33, 1199 (2008).

    Article  CAS  Google Scholar 

  7. M. A. R. Meier, J. O. Metzger, and U. S. Schubert, Chem. Soc. Rev., 36, 1788 (2007).

    Article  CAS  Google Scholar 

  8. U. Biermann, W. Friedt, S. Lang, W. Lühs, G. Machmüller, J. O. Metzger, M. R. gen Klaas, H. J. Schäfer, and M. P. Schneider, Angew. Chem. Int. Ed., 39, 2206 (2000).

    Article  CAS  Google Scholar 

  9. L. M. de Espinosa and M. A. R. Meier, Eur. Polym. J., 47, 837 (2011).

    Article  Google Scholar 

  10. S. Hu, X. Luo, and Y. Li, ChemSusChem, 7, 66 (2014).

    Article  CAS  Google Scholar 

  11. L. Maisonneuve, T. Lebarbe, E. Grau, and H. Cramail, Polym. Chem., 4, 5472 (2013).

    Article  CAS  Google Scholar 

  12. I. Bica, E. M. Anitas, and L. M. E. Averis, J. Ind. Eng. Chem., 28, 86 (2015).

    Article  CAS  Google Scholar 

  13. M. S. El-Shahawi, H. Alwael, A. Arafat, A. A. Al-Sibaai, A. S. Bashammakh, and E. A. Al-Harbi, J. Ind. Eng. Chem., 28, 147 (2015).

    Article  CAS  Google Scholar 

  14. Y. Du, Z. Yang, and C. Zhou, Macromol. Res., 23, 867 (2015).

    Article  CAS  Google Scholar 

  15. Y.-C. Chung, H. Y. Kim, J.-H. Yu, and B. C. Chun, Macromol. Res., 23, 350 (2015).

    Article  CAS  Google Scholar 

  16. L. Gerard, C. R. Juan, G. Marina, and C. Virginia, in Biobased Monomers, Polymers, and Materials, American Chemical Society, Washington, DC, 2012, Vol. 1105, p 269.

    Article  Google Scholar 

  17. C. K. Williams and M. A. Hillmyer, Polym. Rev., 48, 1 (2008).

    Article  CAS  Google Scholar 

  18. Z. Petrovic, Y. Xu, J. Milic, G. Glenn, and A. Klamczynski, J. Polym. Environ., 18, 94 (2010).

    Article  CAS  Google Scholar 

  19. B. Das, P. Chattopadhyay, M. Mandal, B. Voit, and N. Karak, Macromol. Biosci., 13, 126 (2013).

    Article  CAS  Google Scholar 

  20. Y. J. Jo, H. V. Ly, J. Kim, S.-S. Kim, and E. Lee, J. Ind. Eng. Chem., 29, 304 (2015).

    Article  CAS  Google Scholar 

  21. K. K. Choi, S. H. Park, K. W. Oh, and S. H. Kim, Macromol. Res., 23, 333 (2015).

    Article  CAS  Google Scholar 

  22. I. Yilgör, E. Yilgör, and G. L. Wilkes, Polymer, 58, A1 (2015).

    Article  Google Scholar 

  23. Y. Li, G. A. Thouas, and Q.-Z. Chen, RSC Adv., 2, 8229 (2012).

    Article  CAS  Google Scholar 

  24. R. J. Koopmans, Soft Matter, 2, 537 (2006).

    Article  CAS  Google Scholar 

  25. M. Gobin, P. Loulergue, J.-L. Audic, and L. Lemiègre, Ind. Crop. Prod., 70, 213 (2015).

    Article  CAS  Google Scholar 

  26. C. Zhang, S. A. Madbouly, and M. R. Kessler, ACS Appl. Mater. Interfaces, 7, 1226 (2015).

    Article  CAS  Google Scholar 

  27. A. Campanella, L. M. Bonnaillie, and R. P. Wool, J. Appl. Polym. Sci., 112, 2567 (2009).

    Article  CAS  Google Scholar 

  28. I. A. Mohammed, E. A. J. Al-Mulla, N. K. A. Kadar, and M. Ibrahim, J. Oleo Sci., 62, 1059 (2013).

    Article  CAS  Google Scholar 

  29. Z. S. Petrovic, W. Zhang, and I. Javni, Biomacromolecules, 6, 713 (2005).

    Article  CAS  Google Scholar 

  30. X. Kong and S. S. Narine, Biomacromolecules, 8, 2203 (2007).

    Article  CAS  Google Scholar 

  31. A. B. Chaudhari, P. D. Tatiya, R. K. Hedaoo, R. D. Kulkarni, and V. V. Gite, Ind. Eng. Chem. Res., 52, 10189 (2013).

    Article  CAS  Google Scholar 

  32. A. Chaudhari, A. Kuwar, P. Mahulikar, D. Hundiwale, R. Kulkarni, and V. Gite, RSC Adv., 4, 17866 (2014).

    Article  CAS  Google Scholar 

  33. A. Guo, D. Demydov, W. Zhang, and Z. Petrovic, J. Polym. Environ., 10, 49 (2002).

    Article  CAS  Google Scholar 

  34. Z. S. Petrovic, A. Guo, I. Javni, I. Cvetkovic, and D. P. Hong, Polym. Int., 57, 275 (2008).

    Article  CAS  Google Scholar 

  35. S. Caillol, M. Desroches, S. Carlotti, R. Auvergne, and B. Boutevin, Green Materials, 1, 16 (2013).

    Article  CAS  Google Scholar 

  36. M. Desroches, S. Caillol, V. Lapinte, R. M. Auvergne, and B. Boutevin, Macromolecules, 44, 2489 (2011).

    Article  CAS  Google Scholar 

  37. Z. S. Petrovic, Polym. Rev., 48, 109 (2008).

    Article  CAS  Google Scholar 

  38. A. Guo, Y. Cho, and Z. S. Petrovic, J. Polym. Sci., Part A: Polym. Chem., 38, 3900 (2000).

    Article  CAS  Google Scholar 

  39. A. Zlatanic, C. Lava, W. Zhang, and Z. S. Petrovic, J. Polym. Sci., Part B: Polym. Phys., 42, 809 (2004).

    Article  CAS  Google Scholar 

  40. A. Zlatanic, Z. S. Petrovic, and K. Dušek, Biomacromolecules, 3, 1048 (2002).

    Article  CAS  Google Scholar 

  41. C. Zhang, Y. Xia, R. Chen, S. Huh, P. A. Johnston, and M. R. Kessler, Green Chem., 15, 1477 (2013).

    Article  CAS  Google Scholar 

  42. G. Lligadas, J. C. Ronda, M. Galià, and V. Cádiz, Biomacromolecules, 11, 2825 (2010).

    Article  CAS  Google Scholar 

  43. P. Król, Prog. Mater. Sci., 52, 915 (2007).

    Article  Google Scholar 

  44. P. F. van Hutten, R. M. Mangnus, and R. J. Gaymans, Polymer, 34, 4193 (1993).

    Article  Google Scholar 

  45. U. Schuchardt, R. Sercheli, and R. M. Vargas, J. Braz. Chem. Soc., 9, 199 (1998).

    Article  CAS  Google Scholar 

  46. A. B. Lowe, Polym. Chem., 5, 4820 (2014).

    Article  CAS  Google Scholar 

  47. A. Dondoni, Angew. Chem. Int. Ed., 47, 8995 (2008).

    Article  CAS  Google Scholar 

  48. H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001).

    Article  CAS  Google Scholar 

  49. A. B. Lowe, Polym. Chem., 1, 17 (2010).

    Article  CAS  Google Scholar 

  50. M. Ionescu, D. Radojcic, X. Wan, Z. S. Petrovic, and T. A. Upshaw, Eur. Polym. J., 67, 439 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Chul Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagi, P., Hong, S.C. Vegetable oil-based polyols for sustainable polyurethanes. Macromol. Res. 23, 1079–1086 (2015). https://doi.org/10.1007/s13233-015-3154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3154-6

Keywords

Navigation