Skip to main content
Log in

Study on waterborne polyurethanes based on poly(dimethyl siloxane) and perfluorinated polyether

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Methylsiloxane and fluorinated segments were introduced into the polymer backbone of polyurethane by direct reaction of isocyanate with dialcohol terminated perfluoropolyether (E10-H) and poly(dimethyl siloxane) (PDMS). The polyurethane structure was revealed by Fourier transform infrared spectrometer in ATR mode and Xray photoelectron spectroscope. It was found that the silicon and fluorine moieties easily migrated to the surface of material in film-forming process due to their lower energy, so the water contact angle on membrane surface was greatly enhanced (maximum 100.1°), and the hydrophobic property of material was improved. Different degree of phase separation was observed by scanning electron microscope. Increment of PDMS or E10-H content caused the phase separation obviously, but section of PDMS and E10-H modified polyurethane showed that phase separation reduced. The linear dynamic viscoelastic measurements indicated that the dynamic storage modulus of all samples increased with the increment of frequency, and PDMS modified WPU’s grew fastest. The slope of G′ vs. G″ showed a decrement, so each sample had a shear thinning behavior. The perfluoropolyether oil was to reduce viscosity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. G. Kim, Macromol. Res., 10, 365 (2002).

    Article  CAS  Google Scholar 

  2. K. Lee, B. Lee, and C. Kim, Macromol. Res., 13, 441 (2005).

    Article  CAS  Google Scholar 

  3. T. Shen and M. Lu, L. Liang, Macromol. Res., 20, 827 (2012).

    Article  CAS  Google Scholar 

  4. H. Fu, C. Yan, and W. Zhou, Compos. Sci. Technol., 85, 65 (2013).

    Article  CAS  Google Scholar 

  5. H. Xin, Y. D. Shen, and X. R. Li, Polym. Bull., 67, 1849 (2011).

    Article  CAS  Google Scholar 

  6. M. M. Rahman, I. Lee, and H. H. Chun, J. Appl. Polym. Sci., 131, 2014

  7. H. Xin, Y. Shen, and X. Li, Colloids Surf. A, 384, 205 (2011).

    Article  CAS  Google Scholar 

  8. M. S. Shin, Y. H. Lee, and M. M. Rahman, Polymer, 54, 4873 (2013).

    Article  CAS  Google Scholar 

  9. E. Degrand-Contraires, A. Lopez, and Y. Reyes, Macromol. Mater. Eng., 298, 612 (2013).

    Article  Google Scholar 

  10. L. Guo, S. Jiang, and T. Qiu, J. Appl. Polym. Sci., 131(8), (2014).

    Google Scholar 

  11. S. Turri, M. Levi, and T. Trombetta, J. Appl. Polym. Sci., 93, 136 (2004).

    Article  CAS  Google Scholar 

  12. C. M. Mahoney, J. A. Gardella, and J. C. Rosenfeld, Macromolecules, 35, 5256 (2002).

    Article  CAS  Google Scholar 

  13. E. Hamciuc, C. Hamciuc, and M. Cazacu, J. Macromol. Sci. A, 44, 1069 (2007).

    Article  CAS  Google Scholar 

  14. M. Krea, D. Roizard, and N. Moulai-Mostefa, J. Membr. Sci., 241, 55 (2004).

    Article  CAS  Google Scholar 

  15. C. J. Wohl, B. M. Atkins, and M. A. Belcher, High Perform. Polym., 24, 40 (2012).

    Article  CAS  Google Scholar 

  16. Y. Yu, B. Liao, and G. Li, Ind. Eng. Chem. Res., 53, 564 (2014).

    Article  CAS  Google Scholar 

  17. X. Pei, G. Chen, and X. Fang, J. Appl. Polym. Sci., 129, 3718 (2013).

    Article  CAS  Google Scholar 

  18. F. Sun, S. L. Jiang, and J. Liu, Nucl. Instrum. Mathods Phys. Res. B, 264, 318 (2007).

    Article  CAS  Google Scholar 

  19. W. D. He and C. Y. Pan, J. Appl. Polym. Sci., 80, 2752 (2001).

    Article  CAS  Google Scholar 

  20. B. K. Kim, J. W. Seo, and H. M. Jeong, Macromol. Res., 11, 198 (2003).

    Article  CAS  Google Scholar 

  21. Z. Wu, H. Wang, and X. Tian, Phys. Chem. Chem. Phys., 16, 6787 (2014).

    Article  CAS  Google Scholar 

  22. N. P. Rhodes, J. M. Bellón, and M. J. Buján, J. Mater. Sci. Mater. Med., 16, 1207 (2005).

    Article  CAS  Google Scholar 

  23. H. Ni, A. H. Johnson, and M. D. Soucek, Macromol. Mater. Eng., 287, 470 (2002).

    Article  CAS  Google Scholar 

  24. S. Zhang, Z. Chen, and M. Guo, RSC. Adv., 4, 30938 (2014).

    Article  CAS  Google Scholar 

  25. S. Zhang, Z. Chen, and M. Guo, Colloids Surf. A, 468, 1 (2015).

    Article  CAS  Google Scholar 

  26. A. Koh, A. W. Carpenter, and D. L. Slomberg, ACS Appl. Mater. Inter., 5, 7956 (2013).

    Article  CAS  Google Scholar 

  27. S. S. Nair, E. J. McCullough, and V. K. Yadavalli, Langmuir, 30, 12986 (2014).

    Article  CAS  Google Scholar 

  28. Sadtler Handbook of Infrared Spectra, Sadtler Research Laboratories, Philadephia, 1978.

  29. G. B. Li, M. Li, and C. Fan, Compos. Sci. Technol., 106, 68 (2015).

    Article  CAS  Google Scholar 

  30. S. W. Lee, Y. H. Lee, and H. Park, Macromol. Res., 21, 709 (2013).

    Article  CAS  Google Scholar 

  31. F. J. Moulder, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Eden Prairie, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Yang, Z. & Zhou, C. Study on waterborne polyurethanes based on poly(dimethyl siloxane) and perfluorinated polyether. Macromol. Res. 23, 867–875 (2015). https://doi.org/10.1007/s13233-015-3114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3114-1

Keywords

Navigation