Skip to main content
Log in

Heparin nanogel-containing liposomes for intracellular RNase delivery

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Liposomes containing nanogels (liponanogels) were fabricated by sonicating heparin-Pluronic (HP) nanogels with pegylated lipids for ribonuclease (RNase) delivery. Liponanogels with an average diameter of 316 nm were obtained and their spherical morphology was elucidated by atomic force microscopy (AFM). Confocal laser scanning microscopy (CLSM) revealed the core-shell structure of the liponanogels using two different fluorescent dyes, showing that HP nanogels were localized in the core of the liposomes. Interestingly, the hybridization of these two systems remedies the drawbacks of each system while they hold their strengths called “WIN-WIN effect”. When HP nanogels were used to encapsulate RNase in liponanogels, the loading of RNase was almost doubled as compared with the loading in liposomes without nanogels. Due to the presence of a lipid bilayer on the nanogels, the release of RNase was prolonged over 4 days whereas it was much faster (82% after 21 h) for bare HP nanogels. The cytotoxicity of the RNase-loaded liponanogels was much higher than that of free RNase because of the endocytic cellular uptake of the particles. We believe that these hybrid liponanogel systems can potentially be utilized for the hereditary diseases and targeted cancer therapy since they can efficiently load RNases and sustainly release in target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pornpattananangkul, S. Olson, S. Aryal, M. Sartor, C. M. Huang, K. Vecchio, and L. Zhang, ACS Nano, 4, 1935 (2010).

    Article  CAS  Google Scholar 

  2. Y. Oh, R. Perez-Soler, F. Fossella, B. Glisson, J. Kurie, G. Walsh, M. Truong, and D. Shin, Invest. New Drug., 18, 243 (2000).

    Article  CAS  Google Scholar 

  3. N. Zheng, W. Jiang, R. Lionberger, and L. Yu, in FDA Bioequivalence Standards, L. X. Yu and B. V. Li, Eds., Springer, New York, 2014, p 275.

  4. J. S. Lee and J. Feijen, J. Control. Release, 161, 473 (2012).

    Article  CAS  Google Scholar 

  5. J. S. Lee, W. Zhou, F. Meng, D. Zhang, C. Otto, and J. Feijen, J. Control. Release, 146, 400 (2010).

    Article  CAS  Google Scholar 

  6. B. Chaize, J. P. Colletier, M. Winterhalter, and D. Fournier, Artif. Cells Blood Substit. Immobil. Biotechnol., 32, 67 (2004).

    Article  CAS  Google Scholar 

  7. J. P. Colletier, B. Chaize, M. Winterhalter, and D. Fournier, BMC Biotechnol., 2, 9 (2002).

    Article  Google Scholar 

  8. T. G. Van Thienen, K. Raemdonck, J. Demeester, and S. C. De Smedt, Langmuir, 23, 9794 (2007).

    Article  Google Scholar 

  9. Y. Sekine, Y. Moritani, T. Ikeda-Fukazawa, Y. Sasaki, and K. Akiyoshi, Adv. Healthc. Mater., 1, 722 (2012).

    Article  CAS  Google Scholar 

  10. J. Choi, Y. Joung, J. Bae, J. Choi, T. Quyen, and K. Park, Macromol. Res., 19, 180 (2011).

    Article  CAS  Google Scholar 

  11. J. S. Lee and J. Feijen, J. Control. Release, 158, 312 (2012).

    Article  CAS  Google Scholar 

  12. D. H. Nguyen, J. H. Choi, Y. K. Joung, and K. D. Park, J. Bioact. Compat. Polym., 26, 287 (2011).

    Article  CAS  Google Scholar 

  13. D. H. Nguyen, Y. K. Joung, J. H. Choi, H. T. Moon, and K. D. Park, Biomed. Mater., 6, 055004 (2011).

  14. J. H. Choi, J. Y. Jang, Y. K. Joung, M. H. Kwon, and K. D. Park, J. Control. Release, 147, 420 (2010).

    Article  CAS  Google Scholar 

  15. J. S. Lee, M. Ankone, E. Pieters, R. M. Schiffelers, W. E. Hennink, and J. Feijen, J. Control. Release, 155, 282 (2011).

    Article  CAS  Google Scholar 

  16. J. Park, S. H. Wrzesinski, E. Stern, M. Look, J. Criscione, R. Ragheb, S. M. Jay, S. L. Demento, A. Agawu, P. Licona Limon, A. F. Ferrandino, D. Gonzalez, A. Habermann, R. A. Flavell, and T. M. Fahmy, Nat. Mater., 11, 895 (2012).

    Article  CAS  Google Scholar 

  17. I. Wegrzyn, B. Nagel, M. Katterle, O. Orwar, and A. Jesorka, Biophys. J., 100, 504a (2011).

  18. H. Zhou, J. D. Watts, and R. Aebersold, Nat. Biotechnol., 19, 375 (2001).

    Article  CAS  Google Scholar 

  19. L. Saunders, J. Perrin, and D. Gammack, J. Pharm. Pharmacol., 14, 567 (1962).

    Article  CAS  Google Scholar 

  20. D. H. Nguyen, J. W. Bae, J. H. Choi, J. S. Lee, and K. D. Park, J. Bioact. Compat. Polym., 28, 341 (2013).

    Article  CAS  Google Scholar 

  21. J. S. Lee, W. Zhou, F. Meng, D. Zhang, C. Otto, and J. Feijen, J. Control. Release, 146, 400 (2010).

    Article  CAS  Google Scholar 

  22. J. Sabin, G. Prieto, J. M. Ruso, R. Hidalgo-Alvarez, and F. Sarmiento, Soft Matter, 20, 401 (2006).

    Article  CAS  Google Scholar 

  23. W. Y. Ayen, K. Garkhal, and N. Kumar, Mol. Pharm., 8, 466 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Dong Park.

Additional information

The image from this article is used as the cover image of the Volume 23, Issue 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.H., Lee, J.S., Choi, J.H. et al. Heparin nanogel-containing liposomes for intracellular RNase delivery. Macromol. Res. 23, 765–769 (2015). https://doi.org/10.1007/s13233-015-3093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3093-2

Keywords

Navigation