Skip to main content

Advertisement

Log in

The Formation of an Anti-Cancer Complex Under Simulated Gastric Conditions

  • Published:
Food Digestion

Abstract

A potent anti-cancer complex has previously been formed from two major components of milk. Human/bovine α-lactalbumin made lethal to tumour cells (H/BAMLET) is a protein–fatty acid complex that has been produced using the whey protein α-lactalbumin (α-LA) and the fatty acid oleic acid (OA). It was shown that it possesses selective anti-tumour and anti-microbial activity, which was first identified in acidic fractions of human breast milk. The aim of this study was to determine whether the two components would form a bioactive complex during simulated gastric (GI) transit. Results showed that a complex consisting of α-LA and OA is formed as the protein unfolds under acidic conditions and subsequently refolds upon pH increase. Analysis of this complex using Nuclear Magnetic Resonance and Fourier Transform Infra-Red (FTIR) spectroscopies estimated a stoichiometry of 4.1 and 4.4 oleic acids per mole of protein, respectively. FTIR and fluorescence spectroscopies showed that the structure was similar to that of BAMLET. Cytotoxicity testing against cancer cell line U937 cells showed that the complex had an LC50 value of 14.08 μM compared to 9.15 μM for BAMLET. These findings suggest that a BAMLET-like complex may be formed under the tested in vitro GI conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAMLET:

BAMLET produced through chromatography

α-LA:

Holo α-LA at pH 7

Gastric α-LA:

Partially digested α-LA in the gastric phase at pH 2.5

Post-gastric α-LA:

Partially digested α-LA after increase to pH 7

OA:

Oleic acid

FTIR:

Fourier transform infra-red spectroscopy

NMR:

Nuclear magnetic resonance

ANS:

8-Anilino-1-naphthanene sulphonate

BSSL:

Bile salt-stimulated lipase

References

  1. Aits S, Gustafsson L et al (2009) HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death. Int J Cancer 124(5):1008–1019

    Article  CAS  Google Scholar 

  2. Barbana C, Pérez M-D et al (2006) Interaction of bovine α-lactalbumin with fatty acids as determined by partition equilibrium and flourescence spectroscopy. Int Dairy J 16:18–25

    Article  CAS  Google Scholar 

  3. Brew K, Vanaman TC et al (1968) Role of alpha-lactalbumin and a protein in lactose synthetase—a unique mechanism for control of a biological reaction. Proc Natl Acad Sci U S A 59(2):491

    Article  CAS  Google Scholar 

  4. Brodkorb A, Lišková K (2010) A process for producing a biologically active globular protein complex, European patent office, Application number PCT/IE2010/000034, Publication number WO2010131237

  5. Casbarra A, Birolo L et al (2004) Conformation analysis of HAMLET, the folding variant of human α-lactalbumin associated with apoptosis. Protein Sci 13:1322–1330

    Article  CAS  Google Scholar 

  6. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332

    Article  CAS  Google Scholar 

  7. Duringer C, Hamiche A et al (2003) HAMLET interacts with histones and chromatin in tumor cell nuclei. J Biol Chem 278(43):42131–42135

    Article  Google Scholar 

  8. Fast J, Mossberg AK et al (2005) Stability of HAMLET—a kinetically trapped alpha-lactalbumin oleic acid complex. Protein Sci 14(2):329–340

    Article  CAS  Google Scholar 

  9. Fast J, Mossberg AK et al (2007) Compact oleic acid in HAMLET. FEBS Lett 579(27):6905–6100

    Google Scholar 

  10. Favilla R, Parisoli A et al (1997) Alkaline denaturation and partial refolding of pepsin investigated with DAPI as an extrinsic probe. Biophys Chem 67(1–3):75–83

    Article  CAS  Google Scholar 

  11. Fischer W, Gustafsson L et al (2004) Human α-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Res 64:2105–2112

    Article  CAS  Google Scholar 

  12. Gibson R, Kneebone G (1981) Fatty acid composition of human colostrum and mature breast milk. Am J Clin Nutr 34(2):252–257

    CAS  Google Scholar 

  13. Gustafsson L, Hallgren S et al (2005) HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy. J Nutr 135(5):1299–1303

    CAS  Google Scholar 

  14. Gustafsson L, Leijonhufvud I et al (2004) Treatment of skin papillomas with topical α-lactalbumin-oleic acid. N Engl J Med 350(26):2663–2672

    Article  CAS  Google Scholar 

  15. Hakansson PA, Svensson MW et al (2000) A folding variant of α-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Mol Microbiol 35(3):589

    Article  CAS  Google Scholar 

  16. Hakansson PA, Zhivotovsky B et al (1995) Apoptosis induced by a human milk protein. Proc Natl Acadamy Sci USA 92:8064–8068

    Article  CAS  Google Scholar 

  17. Hallgren O, Gustafsson L et al (2006) HAMLET triggers apoptosis but tumor cell death is independent of capases, Bcl-2 and p53. Apoptosis 11(2):221–233

    Article  CAS  Google Scholar 

  18. Halskau N, Frystein A et al (2002) The membrane-bound conformation of alpha-lactalbumin studied by NMR-monitored 1H exchange. J Mol Biol 32(1):99–110

    Article  Google Scholar 

  19. Jensen RG (ed) (1995) Handbook of milk composition. Academic Press, London

    Google Scholar 

  20. Knyazeva EL, Grishchenko VM et al (2008) Who is Mr. HAMLET? Interaction of human α-lactalbumin with monomeric oleic acid. Biochemistry 47(49):13127–13137

    Article  CAS  Google Scholar 

  21. Kuwajima K (1996) The molten globule state of alpha-lactalbumin. FASEB J 10(1):102–109

    CAS  Google Scholar 

  22. Kuwajima K, Nitta K, Sugai S (1980) Intramolecular perturbation of tryptophans induced by the protonation of ionizable groups in goat α-lactalbumin. Biochemica et Biophysica Acta 623(12):389–401

    CAS  Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  24. Liskova K, Kelly AL et al (2010) Effect of denaturation of alpha-lactalbumin on the formation of BAMLET (bovine alpha-lactalbumin made lethal to tumor cells). J Agric Food Chem 58(7):4421–4427

    Article  CAS  Google Scholar 

  25. Lönnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77(Supplement):1537S–1543S

    Google Scholar 

  26. Mitchell DJ, McClure BG et al (2001) Simultaneous monitoring of gastric and oesophogeal pH reveals limitations of conventional oesophogeal pH monitoring in milk fed infants. Arch Dis Child 84:273–276

    Article  CAS  Google Scholar 

  27. Mok KH, Pettersson J et al (2007) HAMLET, protein folding, and tumor cell death. Biochem Biophys Res Commun 354:1–7

    Article  CAS  Google Scholar 

  28. Mossberg AK, Hou YC et al (2010) HAMLET treatment delays bladder cancer development. J Urol 183(4):1590–1597

    Article  CAS  Google Scholar 

  29. Mossberg A-K, Wullt B et al (2007) Bladder cancers respond to intravesical instillation of HAMLET (human α-lactalbumin made lethal to tumors). Int J Cancer 121:1352–1359

    Article  CAS  Google Scholar 

  30. Palmquist DL, Jenkins TC (2003) Challenges with fats and fatty acid methods. J Anim Sci 81(12):3250–3254

    Google Scholar 

  31. Permyakov SE, Knyazeva EL et al (2012) Oleic acid is a key cytotoxic component of HAMLET-like complexes. Biol Chem 393(1–2):85–92

    CAS  Google Scholar 

  32. Pettersson J, Mossberg A-K et al (2006) α-Lactalbumin species variation, HAMLET formation, and tumor cell death. Biochem Biophys Res Commun 345:260–270

    Article  CAS  Google Scholar 

  33. Pettersson-Kastberg J, Aits S et al (2009) Can misfolded proteins be beneficial? The HAMLET case. Ann Med 41(3):162–176

    Article  CAS  Google Scholar 

  34. Pettersson-Kastberg J, Mossberg A-K et al (2009) [alpha]-Lactalbumin, engineered to be nonnative and inactive, kills tumor cells when in complex with oleic acid: a new biological function resulting from partial unfolding. J Mol Biol 394(5):994–1010

    Article  CAS  Google Scholar 

  35. Polverino de Laureto P, De Filippis V et al (1995) Probing the molten globule state of alpha-lactalbumin by limited proteolysis. Biochemistry 34(39):12596–12604

    Article  CAS  Google Scholar 

  36. Rammer P, Groth-Pedersen L et al (2010) BAMLET activates a lysosomal cell death program in cancer cells. Mol Cancer Ther 9(1):24–32

    Article  CAS  Google Scholar 

  37. Rösner HI, Redfield C (2009) The human [alpha]-lactalbumin molten globule: comparison of structural preferences at pH 2 and pH 7. J Mol Biol 394(2):351–362

    Article  Google Scholar 

  38. Spolaore B, Pinato O et al (2010) α-Lactalbumin forms with oleic acid a high molecular weight complex displaying cytotoxic activity. Biochemistry 49(39):8658–8667

    Article  CAS  Google Scholar 

  39. Stinnakre MG, Vilotte JL et al (1994) Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad Sci U S A 91(14):6544–6548

    Article  CAS  Google Scholar 

  40. Svensson MW, Fast J et al (2003) α-Lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Sci 12(12):2794–2804

    Article  CAS  Google Scholar 

  41. Svensson MW, Hakansson PA et al (2000) Conversion of α-lactalbumin to a protein inducing apoptosis. Proc Natl Acadamy Sci USA 97(8):4221–4226

    Article  CAS  Google Scholar 

  42. Tolin S, De Franceschi G et al (2010) The oleic acid complexes of proteolytic fragments of alpha-lactalbumin display apoptotic activity. FEBS J 277(1):163–173

    Article  CAS  Google Scholar 

  43. Wijesinha-Bettoni R, Dobson CM et al (2001) Comparison of the structural and dynamical properties of holo and apo bovine [alpha]-lactalbumin by NMR spectroscopy. J Mol Biol 307(3):885–898

    Article  CAS  Google Scholar 

  44. Wilhelm K, Darinskas A et al (2009) Protein oligomerization induced by oleic acid at the solid–liquid interface—equine lysozyme cytotoxic complexes. FEBS J 276(15):3975–3989

    Article  CAS  Google Scholar 

  45. Zhang M, Yang F Jr et al (2009) Cytotoxic aggregates of alpha-lactalbumin induced by unsaturated fatty acid induce apoptosis in tumor cells. Chemico-Biol Interactions 180:131–142

    Article  CAS  Google Scholar 

  46. Palmquist DL, Jenkins TC (2003) Challenges with fats and fatty acid methods. J Anim Sci 81(12):3250–3254

    Google Scholar 

Download references

Acknowledgments

This work was funded under the Food Institute Management Research project number 08RDTMFRC650. Louise Sullivan was funded under the Teagasc Walsh Fellowship scheme. This work was carried out in conjunction with COST Action FA 1005, Infogest. Louise Sullivan was sponsored with a travel grant by this action. The authors wish to thank Dr John O’Brien and Dr Alan Hennessey for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Brodkorb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, L.M., Mok, K.H. & Brodkorb, A. The Formation of an Anti-Cancer Complex Under Simulated Gastric Conditions. Food Dig. 4, 7–18 (2013). https://doi.org/10.1007/s13228-012-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13228-012-0030-0

Keywords

Navigation