Skip to main content
Log in

Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Wallemia comprises air- and food-borne, mycotoxigenic contaminants including the halophilic W. ichthyophaga, xerotolerant W. sebi and xerophilic W. muriae. Wallemia isolates are easily overlooked and only a comparably small number of strains have been deposited in culture collections so far. In order to better understand the natural distribution of Wallemia spp. and to encounter their natural habitats, we tested more than 300 low-water-activity substrates and 30 air samples from a wide geographical coverage. We isolated more than 150 new Wallemia strains. Wallemia sebi and W. muriae were isolated mostly from hypersaline water, low-water-activity foods, plant materials and indoor. Wallemia muriae is the dominant Wallemia species in the air of natural and human influenced environments in Europe. New isolates of W. ichthyophaga were obtained from hypersaline environments such as brine, salt crystals, salty foods and MgCl2-rich bitterns, and from the air of hay barns in Denmark. Five halotolerant strains were recognised as a hitherto un-described species Wallemia hederae, the phylogenetic sister of the halophilic W. ichthyophaga. Wallemia spp. show in-vitro growth on media that contain the chaotropic salt MgCl2. Wallemia ichthyophaga can grow in liquid medium enriched with 2 M MgCl2. Never before has a microorganism been grown on comparably high MgCl2 concentrations. Tests of the activity of a wide range of extracellular enzymes in the presence of NaCl also suggested that Wallemia is well-adapted to substrates with a reduced water activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107:13748–13753. doi:10.1073/pnas.1000454107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525. doi:10.1139/W07-010

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin JW, Chaney MO, Chen S, Demarco PV, Jones ND, Occolowitz JL (1974) Structure of antibiotic A 25822 B, a novel nitrogen-containing C28-sterol with antifungal properties. J Antibiot 27:992–993

    Article  PubMed  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. doi:10.1038/nmeth.2109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Hoog GS, Guarro J, Gené J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures/Universitat Rovira i Virgili, Utrecht/Reus

    Google Scholar 

  • de Hoog GS, Zalar P, Gerits van den Ende B, Gunde-Cimerman N (2005) Relation of halotolerance to human pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentration in archaea, bacteria and eukarya. Springer, The Netherlands, pp 373–395

    Google Scholar 

  • Desroches TC, McMullin DR, Miller JD (2014) Extrolites of Wallemia sebi, a very common fungus in the built environment. Indoor Air. doi:10.1111/ina.12100, 1–10

    PubMed  Google Scholar 

  • Frank M, Kingston E, Jeffery JC, Moss MO, Murray M, Simpson TJ, Sutherland A (1999) Walleminol and walleminone, novel caryophyllenes from the toxigenic fungus Wallemia sebi. Tetrahedron Lett 40:133–136

  • Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106:12814–12819. doi:10.1073/pnas.0811003106

    Article  PubMed  PubMed Central  Google Scholar 

  • Gams W, Hoekstra ES, Aptroot A (1998) CBS course of mycology, 4th edn. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Gareis M, Gareis EM (2007) Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B. Mycopathologia 163:207–14. doi:10.1007/s11046-007-9003-1

    Article  PubMed  CAS  Google Scholar 

  • Gargas A, Taylor JW (1992) Polymerase chain reaction (PCR) for amplifying and sequencing nuclear 18S rDNA for lychenized fungi. Mycologia 84:589–592

    Article  CAS  Google Scholar 

  • Gerrits van den Ende AHG, de Hoog GS (1999) Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud Mycol 43:151–162

    Google Scholar 

  • Gock MA, Hocking AD, Pitt JI, Poulos PG (2003) Influence of temperature, water activity and pH on growth of some xerophilic fungi. Int J Food Microbiol 81:11–19. doi:10.1016/S0168-1605(02)00166-6

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11. doi:10.1111/j.1574-6941.2009.00794.x

    Article  PubMed  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1267. doi:10.1098/rstb.2004.1502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guarro J, Gugnani HC, Sood N, Batra R, Mayayo E, Gené J, Kakkar S (2008) Subcutaneous phaeohyphomycosis caused by Wallemia sebi in an immunocompetent host. J Clin Microbiol 46:1129–1131. doi:10.1128/JCM.01920-07

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  PubMed  CAS  Google Scholar 

  • Gunde-Cimermana N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240. doi:10.1111/j.1574-6941.2000.tb00716.x

    PubMed  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D’Auria G, de Lima AF, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813. doi:10.1111/j.1462-2920.2006.01212.x

    Article  PubMed  CAS  Google Scholar 

  • Hanhela R, Louhelainen K, Pasanen A (1995) Prevalence of microfungi in Finnish cow barns and some aspects of the occurrence of Wallemia sebi and Fusaria. Scand J Work Environ Health 21:223–228. doi:10.5271/sjweh.31

    Article  PubMed  CAS  Google Scholar 

  • Hibbett D (2006) A phylogenetic overview of the agaricomycotina. Mycologia 98:917–925. doi:10.3852/mycologia.98.6.917

    Article  PubMed  Google Scholar 

  • Hutwimmer S, Wang H, Strasser H, Burgstaller W (2009) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia 102:1–10. doi:10.3852/09-079

    Article  Google Scholar 

  • Javor BJ (1984) Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol 48:352–360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jennings DH (1991) The role of droplets in helping to maintain a constant growth rate of aerial hyphae. Mycol Res 95:883–884

    Article  Google Scholar 

  • Johan-Olsen O (1887) Om sop på klipfisk den så kaldte mid. Christiania Videnskabs-Selskabs Forhandlinger

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi:10.1093/nar/gki198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kocev D, Džeroski S (2013) Habitat modelling with single- and multi-target trees and ensembles. Ecol Inform 18:79–92. doi:10.1016/j.ecoinf.2013.06.003

    Article  Google Scholar 

  • Kocev D, Džeroski S, White M, Newell G, Griffioen P (2009) Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol Model 220:1159–1168. doi:10.1016/j.ecolmodel.2009.01.037

    Article  Google Scholar 

  • Kocev D, Vens C, Struyf J, Džeroski S (2013) Tree ensembles for predicting structured outputs. Pattern Recogn 46:817–833. doi:10.1016/j.patcog.2012.09.023

    Article  Google Scholar 

  • Konte T, Plemenitaš A (2013) The HOG signal transduction pathway in the halophilic fungus Wallemia ichthyophaga: identification and characterisation of MAP kinases WiHog1A and WiHog1B. Extremophiles 17:623–36. doi:10.1007/s00792-013-0546-4

    Article  PubMed  CAS  Google Scholar 

  • Kralj Kunčič M, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76:329–337. doi:10.1128/AEM.02318-09

    Article  PubMed  PubMed Central  Google Scholar 

  • Kralj Kunčič M, Zajc J, Drobne D, Pipan Tkalec Ž, Gunde-Cimerman N (2013) Morphological responses to high sugar concentrations differ from adaptation to high salt concentrations in the xerophilic fungi Wallemia spp. Fungal Biol 117:466–478. doi:10.1016/j.funbio.2013.04.003

    Article  PubMed  Google Scholar 

  • Kristiansen A, Saunders AM, Hansen AA, Nielsen PH, Nielsen JL (2012) Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiol Ecol 80:390–401. doi:10.1111/j.1574-6941.2012.01305.x

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 87–110

  • Lappalainen S, Pasanen AL, Reiman M, Kalliokoski P (1998) Serum IgG antibodies against Wallemia sebi and Fusarium species in Finnish farmers. Ann Allergy Asthma Immunol 81:585–592. doi:10.1016/S1081-1206(10)62710-X

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682. doi:10.1016/j.watres.2006.08.027

    Article  PubMed  CAS  Google Scholar 

  • Lenassi M, Zajc J, Gostinčar C, Gorjan A, Gunde-Cimerman N, Plemenitaš A (2011) Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga. Fungal Biol 115:959–970. doi:10.1016/j.funbio.2011.04.001

    Article  PubMed  CAS  Google Scholar 

  • Madelin MF, Dorabjee S (1974) Conidium ontogeny in Wallemia sebi. Trans Br Mycol Soc 63:121–130. doi:10.1016/S0007-1536(74)80143-9

    Article  Google Scholar 

  • Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS (2007) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of basidiomycota. Can J Bot 84:1794–1805. doi:10.1139/b06-128

  • Moore RT (1986) A note on Wallemia sebi. Antonie Van Leeuwenhoek 52:183–187. doi:10.1007/BF00429322

    Article  PubMed  CAS  Google Scholar 

  • Moss MO (1998) Recent studies of mycotoxins. J Appl Microbiol 84:62S–76S. doi:10.1046/j.1365-2672.1998.0840s162S.x

    Article  Google Scholar 

  • Nguyen HDT, Nickerson NL, Seifert KA (2013) Basidioascus and Geminibasidium: a new lineage of heat-resistant and xerotolerant basidiomycetes. Mycologia 105:1231–1250. doi:10.3852/12-351

    Article  PubMed  Google Scholar 

  • Padamsee M, Kumar TK, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY, LaButti K, Lapidus A, Lindquist E, Lucas S, Miller K, Shantappa S, Grigoriev IV, Hibbett DS, McLaughlin DJ, Spatafora JW, Aime MC (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49:217–226. doi:10.1016/j.fgb.2012.01.007

    Article  PubMed  CAS  Google Scholar 

  • Paterson RRM, Bridge PD (1994) Biochemical techniques for filamentous fungi. IMI Technical Habdbooks, CAB International, Wallingford

    Google Scholar 

  • Peng XP, Wang Y, Liu PP, Hong K, Chen H, Yin X, Zhu WM (2011) Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Arch Pharm Res 34:907–912. doi:10.1007/s12272-011-0607-0

    Article  PubMed  CAS  Google Scholar 

  • Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Reboux G, Piarroux R, Mauny F, Madroszyk A, Millon L, Bardonnet K, Dalphin JC (2001) Role of molds in farmer’s lung disease in Eastern France. Am J Respir Crit Care Med 163:1534–1539. doi:10.1164/ajrccm.163.7.2006077

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Roussel S, Reboux G, Dalphin JC, Laplante JJ, Piarroux R (2005) Evaluation of salting as a hay preservative against farmer’s lung disease agents. Ann Agric Environ Med 12:217–221

    PubMed  Google Scholar 

  • Sakamoto T, Torii S, Yamada M, Urisu A, Iguchi H, Ueda M, Matsuda Y (1989) Allergenic and antigenic activities of the osmophilic fungus Wallemia sebi asthmatic patients. Arerugi 38:352–359

    PubMed  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2002) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Strauss ML, Jolly NP, Lambrechts MG, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190. doi:10.1046/j.1365-2672.2001.01379.x

    Article  PubMed  CAS  Google Scholar 

  • Struyf J, Džeroski S (2006) Constraint based induction of multi-objective regression trees. In: Bonchi F, Boulicaut J (eds) Knowledge discovery in inductive databases, 4th international workshop, KDID’05, revised, selected and invited papers. Lecture Notes in Computer Science Springer, The Netherlands, pp 222–233

  • Swofford D (2003) Phylogenetic analysis using parsimony (*and other methods). version 4.0b10. Sunderland, Massachusetts

    Google Scholar 

  • Takahashi T (1997) Airborne fungal colony-forming units in outdoor and indoor environments in Yokohama, Japan. Mycopathologia 139:23–33. doi:10.1023/A:1006831111595

    Article  PubMed  CAS  Google Scholar 

  • Takahashi I, Maruta R, Ando K, Yoshida M, Iwasaki T, Kanazawa J, Okabe M, Tamaoki T (1993) UCA1064-B, a new antitumor antibiotic isolated from Wallemia sebi: production, isolation and structural determination. J Antibiot (Tokyo) 46:1312–1314

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tedersoo L, Bahram M, Polme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688–1256688. doi:10.1126/science.1256688

    Article  PubMed  Google Scholar 

  • von Arx JA (1970) The genera of fungi sporulating in pure culture. Cramer Verlag, Lehre

    Google Scholar 

  • Wheeler KA, Hocking AD, Pitt JI (1988) Effects of temperature and water activity on germination and growth of Wallemia sebi. Trans Br Mycol Soc 90:365–368. doi:10.1016/S0007-1536(88)80144-X

    Article  Google Scholar 

  • White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR Protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Williams JP, Hallsworth JE (2009) Limits of life in hostile environments: no barriers to biosphere function? Environ Microbiol 11:3292–308. doi:10.1111/j.1462-2920.2009.02079.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wood GM, Mann PJ, Lewis DF, Reid WJ, Moss MO (1990) Studies on a toxic metabolite from the mould Wallemia. Food Addit Contam 7:69–77

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Tsumura Y, Blomquist G, Wang X-R (2003) 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolates. Appl Environ Microbiol 69:5389–5397. doi:10.1128/AEM.69.9.5389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617. doi:10.1186/1471-2164-14-617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zajc J, Kogej T, Galinski E, Ramos J, Gunde-Cimerman N (2014) The osmoadaptation strategy of the most halophilic fungus Wallemia ichthyophaga, growing optimally at salinities above 15 % NaCl. Appl Environ Microbiol 80:1–10. doi:10.1128/AEM.02702-13

    Article  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87:311–328. doi:10.1007/s10482-004-6783-x

    Article  PubMed  CAS  Google Scholar 

  • Zeng QY, Westermark SO, Rasmuson-Lestander A, Wang XR (2004) Detection and quantification of Wallemia sebi in aerosols by real-time PCR, conventional PCR, and cultivation. Appl Environ Microbiol 70:7295–7302. doi:10.1128/AEM.70.12.7295-7302.2004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Slovenian Research Agency to the Infrastructural Centre Mycosmo and for providing a Young Researcher Grant to S. J. The study was partly financed through the Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (Cipkebip, OP13.1.1.2.02.0005), which is financed by a European Regional Development Fund (85 % share of financing) and by the Slovenian Ministry of Higher Education, Science and Technology (15 % share of financing). The authors would like to acknowledge the support of the European Commission through the project MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data (Grant number ICT-2013-612944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Gunde-Cimerman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jančič, S., Zalar, P., Kocev, D. et al. Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Diversity 76, 97–118 (2016). https://doi.org/10.1007/s13225-015-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-015-0333-x

Keywords

Navigation