Skip to main content

Advertisement

Log in

Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Microbial decomposers, especially a fungal group called aquatic hyphomycetes, play a critical role in processing plant litter in freshwaters by increasing its palatability to invertebrate shredders. Traditionally, communities of aquatic hyphomycetes have been assessed through the identification of spores, which misses non-sporulating taxa. Among new technologies, 454 pyrosequencing stands out as most promising for large-scale species identification. However, very few attempts have been made to validate its effectiveness for assessing the diversity of stream-dwelling fungal communities. We attempted to gain greater insight into the diversity of aquatic fungal communities in streams exposed to various degrees of eutrophication by using the 454 pyrosequencing technology. A total of 173,889 ITS2 pyrosequencing reads with hits for fungi were obtained from the 5 investigated streams. The majority of operational taxonomic units (OTUs) belonged to Ascomycota and the identification to the genus level was achieved for 169 OTUs. Of the total, 135,257 reads (ca. 78 %) showed close affinities to aquatic hyphomycete species. Pyrosequencing showed declining fungal diversity in the most eutrophic streams, which was congruent with a reduced diversity found through spore identification. Dominance patterns revealed by connecting representative OTUs to ITS sequences from aquatic hyphomycetes were similar to those determined by traditional spore identification techniques. However, 454 pyrosequencing provided a more comprehensive view of fungal diversity; it captured almost twice as many taxa as spore counts. This study validates the effectiveness of 454 pyrosequencing for surveying the diversity of stream-dwelling fungal decomposer communities. Its application may accelerate the use of these communities for monitoring the integrity of freshwaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ADRAVE - Agência de Desenvolvimento Regional do Vale do Ave (2010) Braga. Assessed in 25th May 2011. http://www.adrave.pt/

  • Allan JD, Castillo MM (2007) Stream Ecology: structure and function of running waters, 2nd edn. Springer, Dordrecht, p 436

    Book  Google Scholar 

  • Alves A, Boaventura R, Soares H (2009) Evaluation of heavy metals pollution loadings in the sediments of the Ave river basin (Portugal). Soil Sediment Contam 18:603–618

    Article  CAS  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010a) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  CAS  PubMed  Google Scholar 

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010b) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107:13748–13753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Vĕtrovský T, Zifcáková L, Šnajdr J, Rídl J, Vlcek C, Voříšková J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bärlocher F (2005a) Freshwater fungal communities. In: Deighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. Taylor and Francis, CRC Press, Boca Raton, pp 39–59

    Chapter  Google Scholar 

  • Bärlocher F (2005b) Sporulation by aquatic hyphomycetes. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 185–188

    Chapter  Google Scholar 

  • Bärlocher F, Seena S, Wilson KP, Williams DD (2008) Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshw Biol 53:368–379

    Google Scholar 

  • Bärlocher F, Stewart M, Ryder DS (2012) Processing of Eucalyptus viminalis leaves in Australian streams – importance of aquatic hyphomycetes and zoosporic fungi. Fundam Appl Limnol 179:305–319

    Article  Google Scholar 

  • Baschien C, Marvanová L, Szewzyk U (2006) Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nova Hedwigia 83:311–352

    Article  Google Scholar 

  • Baschien C, Tsui CK-M, Gulis V, Szewzyk U, Marvanová L (2013) The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biol-UK 117:660–672

    Article  Google Scholar 

  • Bazzicalupo AL, Bálint M, Schmitt I (2013) Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecol 6:102–109

    Article  Google Scholar 

  • Belliveau M, Bärlocher F (2005) Molecular evidence confirms multiple origin of aquatic hyphomycetes. Mycol Res 109:1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Bermingham S, Maltby L, Dewey FM (1997) Use of immunoassays for the study of natural assemblages of aquatic hyphomycetes. Microb Ecol 33:223–229

    Article  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Castela J, Ferreira V, Graça MAS (2008) Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environ Pollut 153:440–449

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clivot H, Cornut J, Chauvet E, Elger A, Poupin P, Guérold F, Pagnout C (2014) Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches. Environ Microbiol 16:2145–2156

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Duarte S, Pascoal C, Alves A, Correia A, Cássio F (2008a) Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshw Biol 53:91–101

    CAS  Google Scholar 

  • Duarte S, Pascoal C, Cássio F (2008b) High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams. Microb Ecol 56:688–695

    Article  CAS  PubMed  Google Scholar 

  • Duarte S, Pascoal C, Cássio F (2009a) Functional stability of stream-dwelling microbial decomposers exposed to copper and zinc stress. Freshw Biol 54:1683–1691

    Article  CAS  Google Scholar 

  • Duarte S, Pascoal C, Garabétian F, Cássio F, Charcosset J-Y (2009b) Microbial decomposer communities are mainly structured by trophic status in circumneutral and alkaline streams. Appl Environ Microbiol 75:6211–6221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duarte S, Seena S, Bärlocher F, Cássio F, Pascoal C (2012) Preliminary insights into the phylogeography of six aquatic hyphomycete species. PLoS ONE 7:e45289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duarte S, Seena S, Bärlocher F, Pascoal C, Cássio F (2013) A decade’s perspective on the impact of DNA sequencing on aquatic hyphomycete research. Fungal Biol Rev 27:19–24

    Article  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinforma 26:2460–2461

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinforma 27:2194–2200

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fernandes I, Pascoal C, Cássio F (2011) Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 166:1019–1028

    Article  PubMed  Google Scholar 

  • Fernandes I, Duarte S, Cássio F, Pascoal C (2013) Effects of riparian plant diversity loss on aquatic microbial decomposers become more pronounced with increasing time. Microb Ecol 4:763–772

    Article  Google Scholar 

  • Gessner MO, Bärlocher F, Chauvet E (2003) Qualitative and quantitative analyses of aquatic hyphomycetes in streams. In: Tsui CKM, Hyde KD (eds) Freshwater Mycology. Fungal Diversity press, Hong Kong, pp 127–157

    Google Scholar 

  • Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek CP, Druzhinina IS (eds) The Mycota: environmental and microbial relationships, Volume IV, 2nd edn. Springer, Berlin, pp 301–321

    Google Scholar 

  • Giller PS, Hillebrand H, Berninger U-G, Gessner MO, Hawkins S, Inchausti P, Inglis C, Leslie H, Malmqvist B, Monaghan MT, Morin PJ, O’Mullan G (2004) Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104:423–436

    Article  Google Scholar 

  • Grimmett IJ, Shipp KN, Macneil A, Bärlocher F (2013) Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol 6:493–500

    Article  Google Scholar 

  • Hibbett DS, Stajich JE, Spatafora JW (2013) Toward genome-enabled mycology. Mycologia 105:1339–1349

    Article  PubMed  Google Scholar 

  • Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Trans Br Mycol Soc 25:339–417

    Article  Google Scholar 

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  • Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14:221–232

    Article  CAS  PubMed  Google Scholar 

  • Kerekes J, Kaspari M, Stevenson B, Nilsson RH, Hartmann M, Amend AS, Bruns TD (2013) Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest. Mol Ecol 22:2827–2838

    Article  CAS  PubMed  Google Scholar 

  • Krauss G, Sridhar KR, Jung K, Wennrich R, Ehrman J, Bärlocher F (2003) Aquatic hyphomycetes in polluted groundwater habitats of central Germany. Microb Ecol 45:329–339

    CAS  PubMed  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage University Paper series on Quantitative Application in the Social Sciences, 07–011. Beverly Hills and London: Sage Publications.

  • Kuramae EE, Verbruggen E, Hillekens R, de Hollander M, Röling WFM, van der Heijden MGA, Kowalchuck GA (2013) Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PLoS ONE 8:e69973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. Developments in environmental modeling, 20, 2nd edn. Amsterdam, Elsevier

    Google Scholar 

  • Letourneau A, Seena S, Marvanová L, Bärlocher F (2010) Potential use of barcoding to identify aquatic hyphomycetes. Fungal Divers 40:51–64

    Article  Google Scholar 

  • Marvanová L (2005) Maintenance of aquatic hyphomycete cultures. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 143–152

    Chapter  Google Scholar 

  • Meiser A, Bálint M, Schmitt I (2014) Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol 201:623–635

    Article  CAS  Google Scholar 

  • Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decomposing leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolcheva LG, Bärlocher F (2004) Taxon-specific primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3:41–50

    Article  Google Scholar 

  • Nikolcheva LG, Bourque T, Bärlocher F (2005) Fungal diversity during initial stages of leaf decomposition in a stream. Mycol Res 109:246–253

    Article  PubMed  Google Scholar 

  • Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296:97–101

    Article  CAS  PubMed  Google Scholar 

  • Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pascoal C, Cássio F, Marvanová L (2005a) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low order stream. Arch Hydrobiol 162:481–496

    Article  Google Scholar 

  • Pascoal C, Marvanová L, Cássio F (2005b) Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Divers 19:109–128

    Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Seena S, Pascoal C, Marvanová L, Cássio F (2010) DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Divers 44:77–87

    Article  Google Scholar 

  • Seena S, Duarte S, Pascoal C, Cássio F (2012) Intraspecific variation of the aquatic fungus Articulospora tetracladia: an ubiquitous perspective. PLoS ONE 7(4):e35884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selosse M-A, Vohník M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178:3–7

    Article  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, Green JL, Eisen JA, Pollard KS (2011) PhylOTU: A high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol 7(1):e1001061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311–323

    Article  CAS  PubMed  Google Scholar 

  • Sokolski S, Piché Y, Chauvet E, Bérubé JA (2006) A fungal endophyte of black spruce (Picea mariana) needles is also an aquatic hyphomycete. Mol Ecol 15:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Solé M, Fetzer I, Wennrich R, Sridhar KR, Harms H, Krauss G (2008) Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. Sci Total Environ 389:557–565

    Article  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA103:12115–12120

  • Suberkropp K (1998) Microorganisms and organic matter decomposition. In: Naiman RJ, Bilby RE (eds) River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer, New York, pp 120–143

    Chapter  Google Scholar 

  • Taylor BR, Garbary DJ, Miller A, Bärlocher F (2009) Metabolism and ecology of the water mould, Leptomitus lacteus (Oomycota), blooming in winter in a Nova Scotia stream. Fundam Appl Limnol 175:171–180

    Article  CAS  Google Scholar 

  • Tolkkinen M, Mykrä H, Markkola A-M, Aisala H, Vuori K-M, Lumme J, Pirtillä AM, Muotka T (2013) Decomposer communities in human-impacted streams: species dominance rather than richness affects leaf decomposition. J Appl Ecol 50:1142–1151

    CAS  Google Scholar 

  • Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS ONE 7:e40863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Townsend CR, Scarsbrook MR (1997) The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol Oceanogr 42:938–949

    Article  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594

    Article  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR Protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Chapter  Google Scholar 

  • Wymore AS, Compson ZG, Liu CM, Price LB, Whitham TG, Keim P, Marks JC (2013) Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshw Sci 32:663–672

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th edn. Prentice-Hall Inc, Upper Saddle River, New Jersey

    Google Scholar 

  • Zhan A, Hulák M, Sylvester F, Huang X, Adebayo AA, Abbot CL, Adamowicz SJ, Heath DD, Cristescu ME, Maclsaac HJ (2013) High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol Evol 4:558–565

    Article  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006a) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087

    Article  CAS  PubMed  Google Scholar 

  • Zhang W-J, Yuang J, Yu Y-H, Shu S-W, Shen Y-F (2006b) Population genetic structure of Carchesium polypinum (Ciliophora: Peritrichia) in four Chinese lakes inferred from ISSR fingerprinting: high diversity but low differentiation. J Eukaryot Microbiol 53:358–363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The European Regional Development Fund – Operational Competitiveness Programme (FEDER-POFC-COMPETE) (FCOMP-01-0124-FEDER-013954) and the Portuguese Foundation for Science and Technology supported this study (PEst-OE/BIA/UI4050/2014 and PTDC/AACAMB/113746/2009) and S. Duarte (SFRH/BPD/47574/2008). The authors want also to thank to Conceição Egas from Biocant for the help during interpretation of data from pyrosequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Duarte.

Appendix to Duarte et al. - Supplementary information

Appendix to Duarte et al. - Supplementary information

Table 3 Total number of reads (a) and OTUs (b) with good quality; total number of reads (c) and OTUs (d) with a hit in NCBI, and coverage (%) of total diversity (e); total n° of reads (f) and OTUs (g) with a hit in NCBI for fungi and coverage (%) of fungal diversity (h); and total n° of reads (i) and OTUs (j) with a hit in NCBI for aquatic hyphomycete species (AQH), based on 454-pyrosequencing analyses from environmental DNA extracted from oak leaves decomposing at the 5 streams (1, Agra; 2, Oliveira; 3, Andorinhas; 4, Selho; and 5, Couros). T1, T2 and T3 represent 9, 23 and 43 days of stream immersion
Table 4 Relative abundance (%) of each fungal class/subphylum based on 454-pyrosequencing analyses from environmental DNA extracted from oak leaves decomposing in the 5 streams (1, Agra; 2, Oliveira; 3, Andorinhas; 4, Selho and 5, Couros). T1, T2 and T3 represent 9, 23 and 43 days of stream immersion
Table 5 List of the orders found based on 454-pyrosequencing analyses from environmental DNA extracted from oak leaves decomposing in the 5 streams
Table 6 List of the families found based on 454-pyrosequencing analyses from environmental DNA extracted from oak leaves decomposing in the 5 streams
Table 7 List of the genera and species found based on 454-pyrosequencing analyses from environmental DNA extracted from oak leaves decomposing in the 5 streams

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, S., Bärlocher, F., Trabulo, J. et al. Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing. Fungal Diversity 70, 127–148 (2015). https://doi.org/10.1007/s13225-014-0300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-014-0300-y

Keywords

Navigation