Skip to main content
Log in

Phylogeny and taxonomy of Ophiognomonia (Gnomoniaceae, Diaporthales), including twenty-five new species in this highly diverse genus

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Species of Ophiognomonia are leaf-inhabiting endophytes, pathogens, and saprobes that infect plants in the families Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. Based on extensive collecting, this species-rich genus is now known to have a world wide distribution in primarily temperate areas, although some species are known from the subtropics. Analyses of DNA sequences from three markers including guanine nucleotide-binding protein subunit beta-like protein (MS204), translation elongation factor 1α (tef-1α), and the ITS region including ITS1, 5.8 S rDNA and ITS2 regions (ITS) were used to define phylogenetic species in Ophiognomonia. Host plant association correlated with these species. Twenty-five new species of Ophiognomonia and two new combinations are proposed with descriptions and illustrations. In addition, descriptions and illustrations are provided for 12 other species of Ophiognomonia. A key is provided to the 45 currently accepted species of Ophiognomonia. The disposition of additional names in Ophiognomonia is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

References

  • Aguileta G, Marthey S, Chiapello H, Lebrun M-H, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T (2008) Assessing the performance of single-copy genes for recovering robust phylogenies. Syst Biol 57(4):613–627. doi:10.1080/10635150802306527

    Article  PubMed  CAS  Google Scholar 

  • Anderson RL, LaMadeleine LA (1978) The distribution of butternut decline in the eastern United States. Forest Survey Report USDA Forest Service, p. 5

  • Avise JC, Ball RM Jr (1990) Principles of genealogical concordance in species concepts and biological taxonomy. In: Oxford surveys in evolutionary biology, vol 7. Oxford Univ. Press, Oxford

    Google Scholar 

  • Barr ME (1978) The diaporthales in North America with emphasis on Gnomonia and its segregates. Mycol Mem 7:1–232

    Google Scholar 

  • Barrett DK, Pearce RB (1981) Giant leaf blotch disease of sycamore (Acer pseudoplatanus) in Britain. Trans Brit Mycol Soc 76:317–345

    Article  Google Scholar 

  • Behdad E (1991) Plant protection encyclopedia of Iran: pests, diseases, and weeds. Yad-boud Publisher, Isfahan

    Google Scholar 

  • Belisario A, Scotton M, Santori A, Onofri S (2008) Variability in the Italian population of Gnomonia leptostyla, homothallism and resistance of Juglans species to anthracnose. For Pathol 38(2):129–145. doi:10.1111/j.1439-0329.2007.00540.x

    Article  Google Scholar 

  • Berry FH (1981) Walnut anthracnose forest insect & disease leaflet 85. US Department of Agriculture, Forest Service, Northern Area State & Private Forestry, Broomall

    Google Scholar 

  • Broders KD, Boland GJ (2011) Reclassification of the butternut canker fungus, Sirococcus clavigignenti-juglandacearum, into the genus Ophiognomonia. Fungal Biol 115(1):70–79

    Article  PubMed  CAS  Google Scholar 

  • Broughton RE, Harrison RG (2003) Nuclear gene genealogies reveal historical, demographic and selective factors associated with speciation in field crickets. Genetics 163(4):1389–1401

    PubMed  CAS  Google Scholar 

  • Butin H, Wulf A (1987) Asteroma pseudoplatani sp. nov., anamorph of Pleuroceras pseudoplatani (v. Tubeuf) Monod. Sydowia 40:38–41

    Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  PubMed  CAS  Google Scholar 

  • Cummings MP, Neel MC, Shaw KL (2008) A genealogical approach to quantifying lineage divergenece. Evolution 62(9):2411–2422. doi:10.1111/j.1558-5646.2008.00442.x

    Article  PubMed  Google Scholar 

  • Damm U, Crous PW, Fourie PH (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99(5):664–680. doi:10.3852/mycologia.99.5.664

    Article  PubMed  CAS  Google Scholar 

  • Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57(12):2703–2720. doi:10.1111/j.0014-3820.2003.tb01514.x

    PubMed  Google Scholar 

  • Eriksson OE (1992) The non-lichenized pyrenomycetes of Sweden. Btjtryck, Lund, p 208

    Google Scholar 

  • Green S (2004) Fungi associated with shoots of silver birch (Betula pendula) in Scotland. Mycol Res 108:1327–1336

    Article  PubMed  Google Scholar 

  • Green S, Castlebury LA (2007) Connection of Gnomonia intermedia to Discula betulina and its relationship to other taxa in Gnomoniaceae. Mycol Res 111:62–69

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411–453

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56(8):1557–1565. doi:10.1111/j.0014-3820.2002.tb01467.x

    PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Soltis DE (1998) Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants 2. Kluwer, U.S.A., pp 287–348

    Google Scholar 

  • Juhasova G, Ivanova H, Spisak J (2006) Biology of fungus Gnomonia leptostyla in agro-ecological environments of Slovakia. Mikol Fitopatol 40:538–547

    Google Scholar 

  • Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae (Graminae). Syst Bot 21:321–347

    Article  Google Scholar 

  • Kobayashi T (1970) Taxonomic studies of Japanese Diaporthaceae with special reference to their life-histories. Bulletin of the Government Forest Experiment Station 226:1–242

  • Letcher PM, Powell MJ, Viusent MC (2008) Rediscovery of an unusual chytridiaceous fungus new to the order Rhizophydiales. Mycologia 100(2):325–334. doi:10.3852/mycologia.100.2.325

    Article  PubMed  Google Scholar 

  • Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae. Syst Biol 45:524–545

    Article  Google Scholar 

  • Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2008) Phylogenetic placement and taxonomic review of the genus Cryptosporella and its synonyms Ophiovalsa and Winterella (Gnomoniaceae, Diaporthales). Mycol Res 112(1):23–35

    Article  PubMed  Google Scholar 

  • Mejía L, Rossman A, Castlebury L, Yang Z, White J (2011a) Occultocarpon, a new monotypic genus of Gnomoniaceae on Alnus nepalensis from China. Fungal Divers 52(1):99–105. doi:10.1007/s13225-011-0108-y

    Article  Google Scholar 

  • Mejia LC, Rossman AY, Castlebury LA, White JF Jr (2011b) New species, phylogeny, host-associations, and geographic distribution of the genus Cryptosporella (Gnomoniaceae, Diaporthales). Mycologia 103:379–399. doi:10.3852/10-134

    Article  Google Scholar 

  • Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2011c) A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, host-associations, and a four-gene phylogeny. Stud Mycol 68(1):211–235. doi:10.3114/sim.2011.68.10

    Article  Google Scholar 

  • Monod M (1983) Monographie taxonomique des Gnomoniaceae (Ascomycétes de l’ordre des Diaporthales I). Beihefte zur Sydowia 9:1–315

    Google Scholar 

  • Neely D, Black WM (1976) Anthracnose of black walnuts in the Midwest. Plant Dis Rep 60:519–521

    Google Scholar 

  • Nixon KC, Carpenter JM (1993) On outgroups. Cladistics 9:413–426

    Article  Google Scholar 

  • O’Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41(6):600–623

    Article  PubMed  Google Scholar 

  • Otani Y (1995) Mycological Flora of Japan. Vol III Ascomycotina No 3 Sordariales, Diaporthales Tokyo, Yokendo LTD, p. 310

  • Paulus B, Gadek P, Hyde K (2007) Successional patterns of microfungi in fallen leaves of Ficus pleurocarpa (Moraceae) in an Australian tropical rain forest. Biotropica 38:42–51

    Google Scholar 

  • Pennycook SR (2007) Discula betulae comb. nov., correct name for the anamorph of Gnomonia intermedia. Mycotaxon 101:361–364

    Google Scholar 

  • Pringle A, Baker DM, Platt JL, Wares JP, Latgé JP, Taylor JW (2005) Cryptic Speciation in the Cosmopolitan and Clonal Human Pathogenic Fungus Aspergillus Fumigatus. Evolution 59(9):1886–1899. doi:10.1111/j.0014-3820.2005.tb01059.x

    PubMed  CAS  Google Scholar 

  • Raja HA, Miller AN, Shearer CA (2008) Freshwater ascomycetes: Aquapoterium pinicola, a new genus and species of Helotiales (Leotiomycetes) from Florida. Mycologia 100(1):141–148. doi:10.3852/mycologia.100.1.141

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi:10.1093/bioinformatics/btg180

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Harrison R (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57(7):1465–1477. doi:10.1554/03-012

    PubMed  Google Scholar 

  • Salahi S, Javan Nikkhah M, Jamshidi S (2009) Study on population structure of Gnomonia leptostyla, causal agent of walnut anthracnose in East Azarbaijan province, Iran. New Agric Sci J 3:53–68

    Google Scholar 

  • Sarver BAJ, Ward TJ, Gale LR, Broz K, Corby Kistler H, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48(12):1096–1107

    Article  PubMed  Google Scholar 

  • Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23:35–40

    Article  PubMed  CAS  Google Scholar 

  • Sogonov MV, Castlebury LA, Rossman AY, White JF (2007) The type of species of Apiognomonia, Apiognomonia veneta, with its Discula anamorph is distinct from Apiognomonia errabunda. Mycol Res 111:693–709

  • Sogonov MV, Castlebury LA, Rossman AY, Mejía LC, White JF (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud Mycol 62:1–77

    Google Scholar 

  • Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lucking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Budel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98(6):1018–1028. doi:10.3852/mycologia.98.6.1018

    Article  PubMed  CAS  Google Scholar 

  • Sullivan J (1996) Combining data with different distributions of among-site rate variation. Syst Biol 45(3):375–380. doi:10.1093/sysbio/45.3.375

    Article  Google Scholar 

  • Swofford DL (2002) PAUP 4.0b10: phylogenetic analysis using parsimony. Sinauer Associates, USA

    Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. doi:10.1080/10635150701472164

    Article  PubMed  CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32

    Article  PubMed  CAS  Google Scholar 

  • Teodoro NG (1937) An enumeration of Philippine fungi. Techn Bull Dept Agric Comm Manila 4:1–585

    Google Scholar 

  • Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56(2):222–231. doi:10.1080/10635150701311362

    Article  PubMed  CAS  Google Scholar 

  • Townsend JP, Leuenberger C (2011) Taxon sampling and the optimal rates of evolution for phylogenetic inference. Syst Biol. doi:10.1093/sysbio/syq097

  • von Höhnel F (1919) Mycologische fragmenta. Ann Mycol 17:114–133

    Google Scholar 

  • Walker J (1980) Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11:1–129

    Google Scholar 

  • Walker DM, Castlebury LA, Rossman AY, Sogonov MV, White JF Jr (2010) Systematics of the genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations, and morphology. Mycologia 102(6):1479–1496. doi:10.3852/10-002

    Article  PubMed  Google Scholar 

  • Walker DM, Castlebury LA, Rossman AY, White JF Jr (2012) New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota). Mol Phylogenet Evol 64:500–512

    Article  PubMed  CAS  Google Scholar 

  • Wild AL, Maddison DR (2008) Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Mol Phylogenet and Evol 48(3):877–891

    Article  CAS  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, USA

Download references

Acknowledgements

This project was funded by the National Science Foundation Partnerships for Enhancing Expertise in Taxonomy (NSF 03–28364). Additional funding for field work by DMW was received through Rutgers University, New Brunswick, NJ, from the C. Reed Funk Student Award by the Department of Plant Biology and Pathology, also the Backus Award and Everett Lutrell Mentor Student Travel Award from the Mycological Society of America. DMW also thanks Jo Anne Crouch and Adam Bazinet for assistance with data analyses; Kentaro Hosaka, Shinobu Inoue, Takao Kobayashi, Tsuyoshi Hosoya, Yousuke Degawa for hosting a collecting trip to Japan and Yuuri Hirooka for coordinating the visit; Christian Feuillet and Drew Minnis for discussions about nomenclature; Ryan Vo and Tunesha Phipps for technical assistance; and Larissa Vasilyeva, Alain Gardiennet, Yannick Mourgues, Marc Chovillon, Jacques Fornier, and Mikhail Sogonov for collection of fresh specimens for examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Walker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D.M., Castlebury, L.A., Rossman, A.Y. et al. Phylogeny and taxonomy of Ophiognomonia (Gnomoniaceae, Diaporthales), including twenty-five new species in this highly diverse genus. Fungal Diversity 57, 85–147 (2012). https://doi.org/10.1007/s13225-012-0200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0200-y

Keywords

Navigation