Skip to main content

Advertisement

Log in

Seroprevalence and Influence of Torch Infections in High Risk Pregnant Women: A Large Study from South India

  • Original Article
  • Published:
The Journal of Obstetrics and Gynecology of India Aims and scope Submit manuscript

Abstract

Background

The increased complications to the mother and fetus during or after pregnancy and birth are often caused by a wide array of pathogenic organisms mostly belonging to the TORCH group [toxoplasmosis, rubella, cytomegalovirus (CMV), and herpes simplex virus (HSV)]. These agents cause asymptomatic or mild infection in the mother while serious consequences in fetus. The present study was aimed to find significant etiological pathogens in the causation of high risk pregnancy (HRP) in South Indian population.

Material and Methods

A total of 1,158 HRP women (2010–2013) from Modern Government Maternity Hospital, Hyderabad were considered. Two milliliter of blood was obtained and the serum was analyzed for IgG and IgM antibodies against TORCH agents by ELISA.

Results

Twenty-five percent of the study group had fetal congenital malformation in the present pregnancy (Group 1; N = 291) while 75 % showed bad obstetric history (BOH) (Group 2; N = 867). Maternal age of ≤25 years, primi gravida, and consanguinity showed predisposing role for Group 1 while maternal age ≥30 years and ≥ 3 gravida were contributing risk for Group 2. The seropositvity in HRP women for toxoplasma, rubella, CMV, and HSV was 28, 84, 92, and 61 %, respectively for IgG while it was 6, 3, 4, and 3 % for IgG + IgM. Total seropositvity of toxoplasma, rubella, CMV, and HSV in Group 1 was 29, 97, 97, and 62 % while it was 36, 84, 97, and 65 % in Group 2, respectively.

Conclusion

Maternal age of ≤25 years, primi gravida, and consanguinity contributed to fetal congenital malformation in the present pregnancy while maternal age of ≥30 years and ≥ 3 gravida towards BOH. Toxoplasma is protective while rubella and CMV are the infectious agents for HRP. Among the groups, toxoplasma and rubella conferred a predisposing risk towards Group 2 and Group 1, respectively. Sixty-one percent seropositvity of HSV in relation to bad obstetric outcome is the highest prevalence reported so far in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Stegmann BJ, Carey JC. TORCH infections Toxoplasmosis, other (syphilis, varicella-zoster, parvovirus B19), Rubella, cytomegalovirus (CMV), and herpes infections. Curr Women Health Rep. 2002;2(4):253–8.

    Google Scholar 

  2. Maruyama Y, Sameshima H, Kamitomo M, et al. Fetal manifestations and poor outcomes of congenital cytomegalovirus infections: possible candidates for intrauterine antiviral treatments. J Obstet Gynaecol. 2007;33(5):619–23.

    Google Scholar 

  3. Das S, Ramachandran VG, Arora R. Cytomegalovirus and rubella infection in children and pregnant mothers: a hospital based study. J Commun Dis. 2007;39:113–7.

    PubMed  Google Scholar 

  4. Montoya JG, Remington JS. Toxoplasma gondii. In: Mandel GL, Bennett JE, Dolin R, editors. Mandell, Douglas, and Bennetts’ Principles and Practice of Infectious Diseases. 5th ed. Philadelphia: Churchill Livingstone; 2000. p. 2858–88.

    Google Scholar 

  5. Jones J, Lopez A, Wilson M. Congenital toxoplasmosis. Am Fam Physician. 2003;67:2131–8.

    PubMed  Google Scholar 

  6. Verma Ramesh, Khanna Pardeep, Chawla Suraj. Rubella vaccine: New horizon in prevention of congenital rubella syndrome in the India. Hum Vaccines Immuno ther. 2012;8(6):831–3.

    Article  Google Scholar 

  7. Lee JY, Bowden DS. Rubella virus replication and links to teratogenicity. Clin Microbiol Rev. 2000;13:571–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fowler KB, Pass RF. Risk factors for congenital cytomegalovirus infection in the offspring of young women: exposure to young children and recent onset of sexual activity. Pediatrics. 2006;118:e286–92.

    Article  PubMed  Google Scholar 

  9. Al-Hareth Z, Monem F, Abdel Megiud N. Is low birth weight a risk indicator for congenital cytomegalovirus infection? J. Infect Dev Ctries. 2010;4:044–7.

    CAS  Google Scholar 

  10. Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007;17:355–63.

    Article  PubMed  Google Scholar 

  11. Anzivino Elena, Fioriti Daniela, Mischitelli Monica, et al. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol J. 2009;6:40.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Cusini Marco, Ghislanzoni Massimo. The importance of diagnosing genital herpes. J Antimicrob Chemother. 2001;47:9–16.

    Article  CAS  PubMed  Google Scholar 

  13. Ural HSerdar genital herpes in pregnancy. [http://emedicine.medscape.com/article/274874-overview], Accessed 18 November 2011.

  14. O’Riordan DP, Golden WC, Aucott SW. Herpes simplex virus infections in preterm infants. Pediatrics. 2006;118(6):e1612–20.

    Article  PubMed  Google Scholar 

  15. Brown ZA, Benedetti J, Ashley R, et al. Neonatal herpes simplex virus infection in relation to asymptomatic maternal infection at the time of labor. New Engl J Med. 1991;324(18):1247–52.

    Article  CAS  PubMed  Google Scholar 

  16. Brown ZA, Selke S, Zeh J, et al. The acquisition of herpes simplex virus during pregnancy. New Engl J Med. 1997;337(8):509–15.

    Article  CAS  PubMed  Google Scholar 

  17. Biswas D, Borkakoty B, Mahanta J, et al. Seroprevalence and risk factors of herpes simplex virus type-2 infection among pregnant women in Northeast India. BMC Infect Dis. 2011;11:325.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Singh Lt Col G, Sidhu Maj K. Bad obstetric history: a prospective study. MJAFI. 2010;66(2):117–20.

    Google Scholar 

  19. Singh HK, Pangtey NK, Arya Anupama, et al. To study suspected adverse reactions including birth defects in private apex health care centre (Uttar Pradesh) India. J Biomed Pharm Res. 2014;3(3):38–45.

    CAS  Google Scholar 

  20. Parmar Akruti, Rathod SP, Patel SV. A study of congenital anomalies in newborn. NJIRM. 2010;1(1):13–7.

    Google Scholar 

  21. Kapoor Kanchan, Singh Kashish, Sharma Anshu, et al. Congenital anomalies in North Western Indian population – a fetal autopsy study. Eur J Anat. 2013;17(3):166–75.

    Google Scholar 

  22. Singh Arjun, Gupta RK. Pattern of congenital anomalies in newborn: a hospital based prospective study. JK Sci. 2009;11(1):34–6.

    Google Scholar 

  23. Tayebi N, Yazdani K, Naghshin N. The prevalence of congenital malformations and its correlation with consanguineous marriages. Oman Med J. 2010;25(1):37.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bari CFM. Spectrum of congenital anomalies among children attending the pediatric Departments of Dhaka Medical College Hospital IOSR. J Dent Med Sci. 2014;13(2):2279–3000.

    Google Scholar 

  25. Aljumaili ZKM, Alsamarai AM. Risk factors for bad obstetric history in Kirkuk women. Iraq. Int J Infect Microbiol. 2013;2(3):70–7.

    Google Scholar 

  26. Garlantézec R, Monfort C, Rouget F, et al. Maternal occupational exposure to solvents and congenital malformations: a prospective study in the general population. Occup Environ Med. 2009;66(7):456–63.

    Article  PubMed  Google Scholar 

  27. Raza MZ, Sheikh A, Ahmed SS, et al. Risk factors associated with birth defects at a tertiary care center in Pakistan. Ital J Pediatr. 2012;38:68.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Padma S, Ramakrishna D, Bai JP, et al. Pattern of distribution of congenital anomalies in stillborn: a hospital based prospective study. Int j pharm bio sci. 2011;2(2):604–10.

    Google Scholar 

  29. Gandhoke I, Aggarwal R, Lal S, et al. Seroprevalence and incidence of rubella in and around Delhi (1988-2002). Indian J Med Microbiol. 2005;23(3):164–7.

    Article  CAS  PubMed  Google Scholar 

  30. la de L Galvan Ramirez M, Mancilla S, Castrejon OV, et al. Incidence of anti-toxoplasma antibodies in women with high risk pregnancy and habitual abortion. Rev Soc Bras Med Trop. 1995;28(4):333–7.

    Article  CAS  PubMed  Google Scholar 

  31. Coelho RA, Kobayashi M, Carvalho LB. Prevalence of IgG antibodies specific to Toxoplasma gondii among blood donors in Recife, northeast Brazil. Rev Inst Med Trop Sao Paulo. 2003;45:229–31.

    PubMed  Google Scholar 

  32. Dubey JP. The history of Toxoplasma gondii – the first 100 years. J Eukaryot Microbiol. 2008;55:467–75.

    Article  PubMed  Google Scholar 

  33. DubeyJP, Jones JL. Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol. 2008;38:1257–78.

    Article  Google Scholar 

  34. Yasodhara P, Ramalakshmi BA, Naidu AN, et al. Prevalence of specific IgM due to Toxoplasma, Rubella, CMV and C Trachomatis infections during pregnancy. Indian J Med Microbiol. 2001;19(2):79–82.

    Google Scholar 

  35. Mathur MS, Rele MC, Turbadkar D. Seroprevalence of HIV infection in bad obstetrical history and its correlation with TORCH and VDRL. Int Conf AIDS. 2002;14:7–12.

    Google Scholar 

  36. Turbadkar D, Mathur M, Rele M. Seroprevalence of torch infection in bad obstetric history. Indian J Med Microbiol. 2003;21(2):108–10.

    CAS  PubMed  Google Scholar 

  37. Sood N, Soni S, Vegad M, et al. Seroprevalence of toxoplasma gondii in women with bad obstetric history in Ahmedabad. Gujarat Med J. 2009;64:2.

    Google Scholar 

  38. Chopra Shashi, Arora Usha, Aggarwal Aruna. Prevalence of IgM antibodies to toxoplasma, rubella and cytomegalovirus infections during pregnancy. JK Sci. 2004;6(4):190–2.

    Google Scholar 

  39. Sen MR, Shukla BN, Tuhina B. Prevalence of serum antibodies to TORCH infection in and around Varanasi, Northern India. J Clin Diagn Res. 2012;6(9):1483–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Letscher-Bru Valerie, Pfaff AW, Abou-Bacar Ahmed, et al. Vaccination with Toxoplasma gondii SAG-1 protein is protective against congenital toxoplasmosis in BALB/c mice but Not in CBA/J Mice. Infect Immun. 2003;71(11):6615–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ramana BV, Murty DS, Vasudeva Naidu KH, et al. Seroprevalance of rubella in women with bad obstetric history in Tirupati of Andhra Pradesh state of India. Ann Trop Med Public Health. 2012;5(5):471–3.

    Article  Google Scholar 

  42. Ballal M, Bangar RP, Sherine AA, et al. Seroprevalance of rubella in BOH cases––a 5 year study. J Obstet Gynecol India. 2007;57(5):407–9.

    Google Scholar 

  43. Fomda BA, Thokar MA, Farooq U, et al. Seroprevalence of rubella in pregnant women in Kashmir. Indian J Pathol Microbiol. 2004;47:435–7.

    PubMed  Google Scholar 

  44. Singh MP, Arora S, Das A, et al. Congenital rubella and cytomegalovirus infections in and around Chandigarh. Indian J Pathol Microbiol. 2009;52(1):46–8.

    Article  PubMed  Google Scholar 

  45. Chernesky MA, Mahony JB. Rubella Virus. In: Manual of clinical microbiology. 1995; 968–973.

  46. Eftyxia Vardas. Congenital anomalies Fact sheet. Rubella. Updated January 2014. Lancet Laboratories. November 2011 News Letter.

  47. Landolfoa S, Garigliob M, Gribaudoa G, et al. The human cytomegalovirus. Pharmacol Ther. 2003;98(3):269–97.

    Article  Google Scholar 

  48. Gandhoke I, Aggarwal R, Lal S, et al. Congenital CMV infection in symptomatic infants in Delhi and surrounding areas. Indian J Pediatr. 2006;73:1095–7.

    Article  PubMed  Google Scholar 

  49. Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis. 2002;186:S3–28.

    Article  PubMed  Google Scholar 

  50. Reynolds SJ, Risbud AR, Shepherd ME, et al. Recent herpes simplex virus type 2 infections and the risk of human immunodeficiency virus type 1 acquisition in India. J Infect Dis. 2003;187:1513–21.

    Article  PubMed  Google Scholar 

  51. Levett PN. Seroprevalence of HSV-1 and HSV-2 in Barbados. Med Microbiol Immunol. 2005;194:105–7.

    Article  CAS  PubMed  Google Scholar 

  52. Haider M, Rizvi M, Khan N, et al. Serological study of herpes virus infection in female patients with bad obstetric history. Biol Med. 2011;3(2):284–90.

    Google Scholar 

  53. Sgaier SK, Mony P, Jaykumar S, et al. Prevalence and correlates of Herpes Simplex Virus-2 and syphilis infections in the general population in India. Sex Transm Infect. 2011;87:94–100.

    Article  CAS  PubMed  Google Scholar 

  54. WHO. Congenital anomalies-Fact sheet. Updated January 2014.

  55. Surpam RB, Kamlakar UP, Khadse RK, et al. Serological study for TORCH infections in women with bad obstetric history. J Obstet Gynecol India. 2006;56(1):41–3.

    Google Scholar 

Download references

Acknowledgments

The financial support from Department of Biotechnology, New Delhi, India is gratefully acknowledged.

Compliance with ethical requirements and Conflict of interest

The study was approved by the institutional ethics committee and informed consent was obtained from all pregnant women prior to inclusion. None of the authors declare any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jyothy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasoona, K.R., Srinadh, B., Sunitha, T. et al. Seroprevalence and Influence of Torch Infections in High Risk Pregnant Women: A Large Study from South India. J Obstet Gynecol India 65, 301–309 (2015). https://doi.org/10.1007/s13224-014-0615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13224-014-0615-3

Keywords

Navigation