Skip to main content
Log in

An Object Template Approach to Manipulation for Humanoid Avatar Robots for Rescue Tasks

  • Technical contribution
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

Nowadays, the first steps towards the use of remote mobile robots to perform rescue tasks in disaster environments have been made possible. However, these environments still present several challenges for robots, which open new possibilities for research and development. For example, fully autonomous robots are not yet suitable for such tasks with high degree of uncertainty, and pure teloperated robots require high expertise and high mental workload, as well as fast communication to be reliable. In this paper, we discuss a middle ground approach to manipulation, that leverages the strengths and abilities of a human supervisor and a semi-autonomous robot while at the same tackling their weaknesses. This approach is based on the object template concept, which provides an interaction method to rapidly communicate to a remote robot the physical and abstract information for manipulation of the objects of interest. This approach goes beyond current grasp-centered approaches by focusing on the affordance information of the objects and providing flexibility to solve manipulation tasks in versatile ways. Experimental evaluation of the approach is performed using two highly advanced humanoid robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://www.youtube.com/watch?v=pv8bEQEx1yM&list=PLqdOEBv9QGrHrqOQCvdbkDDBHVlTOKJcL.

  2. https://www.youtube.com/watch?v=BdeBzgJIPx0.

  3. https://www.youtube.com/watch?v=4km_aaatA0M.

  4. http://wiki.robocup.org/images/7/70/2016-05-24_RoboCupRescueRulebook_v2.pdf.

References

  1. Fallon M, Kuindersma S, Karumanchi S, Antone M, Schneider T, Dai H, Perez D’Arpino C, Deits R, DiCicco M, Fourie D, et al. (2014) An architecture for online affordance-based perception and whole-body planning. http://hdl.handle.net/1721.1/85690

  2. Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford EJ (eds) Perceiving, acting, and knowing: toward an ecological psychology. Hilldale, USA, pp 67–82

    Google Scholar 

  3. Goodrich MA, Crandall JW, Barakova E (2013) Teleoperation and beyond for assistive humanoid robots. Rev Hum Factors Ergon 9(1):175–226

    Article  Google Scholar 

  4. Hart S, Dinh P, Hambuchen K (2015) The affordance template ROS package for robot task programming. In: 2015 IEEE international conference on robotics and automation (ICRA)

  5. Johnson M, Bradshaw J, Feltovich P, Jonker C, van Riemsdijk B, Sierhuis M (2011) The fundamental principle of coactive design: interdependence must shape autonomy. In: De Vos M, Fornara N, Pitt J, Vouros G (eds) Coordination, organizations, institutions, and norms in agent systems VI, Lecture notes in computer science, vol 6541, pp 172–191. Springer, Berlin. doi:10.1007/978-3-642-21268-0_10

  6. Johnson M, Shrewsbury B, Bertrand S, Wu T, Duran D, Floyd M, Abeles P, Stephen D, Mertins N, Lesman A, Carff J, Rifenburgh W, Kaveti P, Straatman W, Smith J, Griffioen M, Layton B, de Boer T, Koolen T, Neuhaus P, Pratt J (2015) Team IHMC’s lessons learned from the DARPA robotics challenge trials. J Field Robot 32(2):192–208. doi:10.1002/rob.21571

    Article  Google Scholar 

  7. Kohlbrecher S, Romay A, Stumpf A, Gupta A, von Stryk O, Bacim F, Bowman DA, Goins A, Balasubramanian R, Conner DC (2015) Human-robot teaming for rescue missions: team vigir’s approach to the 2013 DARPA robotics challenge trials. J Field Robot 32(3):352–377. doi:10.1002/rob.21558

    Article  Google Scholar 

  8. Koolen T, Smith J, Thomas G, Bertrand S, Carff J, Mertins N, Stephen D, Abeles P, Englsberger J, Mccrory S, et al (2013) Summary of team IHMC’s virtual robotics challenge entry. In: Proceedings of the IEEE-RAS international conference on humanoid robots

  9. Lu M, Zhao J, Guo Y, Ma Y (2016) Accelerated coherent point drift for automatic three-dimensional point cloud registration. IEEE Geosci Remote Sens Lett 13(2):162–166. doi:10.1109/LGRS.2015.2504268

    Article  Google Scholar 

  10. Murphy RR (2000) Introduction to AI robotics. MIT Press, Cambridge

    Google Scholar 

  11. Nagatani K, Kiribayashi S, Okada Y, Tadokoro S, Nishimura T, Yoshida T, Koyanagi E, Hada Y (2011) Redesign of rescue mobile robot quince. In: 2011 IEEE international symposium on safety, security, and rescue robotics (SSRR), pp 13–18

  12. Pratt J (2014) Towards humanoid Avatar robots for co-exploration of hazardous environments. In: 14th IEEE-RAS international conference on humanoid robots (Humanoids), 2014. http://www.humanoids2014.com/index.php/program/plenary-talks

  13. Romay A (2016) An object template approach to manipulation for semi-autonomous Avatar robots. Ph.D. thesis, TU Darmstadt, Department of Computer Science

  14. Romay A, Kohlbrecher S, Conner D, von Stryk O (2015) Achieving versatile manipulation tasks with unknown objects by supervised humanoid robots based on object templates. In: Humanoid robots (Humanoids), 2015 IEEE-RAS 15th international conference on, pp 249–255. doi:10.1109/HUMANOIDS.2015.7363543

  15. Romay A, Maniatopoulos S, Kohlbrecher S, Schillinger P, Stumpf A, Kress-Gazit H, von Stryk O, Conner DC (2016) Collaborative autonomy between high-level behaviors and human supervisors for remote manipulation tasks using different humanoid robots. J Field Robot

  16. Şahin E, Çakmak M, Doğar MR, Uğur E, Üçoluk G (2007) To afford or not to afford: a new formalization of affordances toward affordance-based robot control. Adapt Behav 15(4):447–472

    Article  Google Scholar 

  17. Schillinger P, Kohlbrecher S, von Stryk O (2016) Human-robot collaborative high-level control with application to rescue robotics. In: Proceedings of the IEEE International conference on robotics and automation (ICRA), Stockholm, pp 2796–2802

  18. Tedrake R (2016) Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems. http://drake.mit.edu. Accessed 10 Feb 2016

  19. Yanco HA, Norton A, Ober W, Shane D, Skinner A, Vice J (2015) Analysis of human-robot interaction at the DARPA robotics challenge trials. J Field Robot 32(3):420–444. doi:10.1002/rob.21568

    Article  Google Scholar 

  20. Yang J, Li H, Campbell D, Jia Y (2016) Go-icp: a globally optimal solution to 3D ICP point-set registration. IEEE Trans Pattern Anal Mach Intell PP(99), pp 1–1. doi:10.1109/TPAMI.2015.2513405

Download references

Acknowledgments

The authors would like to thank all members of Team ViGIR, specially David C. Conner, and Team Hector for their contribution and support which enabled the realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Romay.

Additional information

The research presented in this paper has been supported in part by the Defense Advanced Research Projects Agency (DARPA) through the Air Force Research Lab (AFRL) under contract FA8750-12-C-0337 and by the German Academic Exchange Service (DAAD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romay, A., Kohlbrecher, S. & Stryk, O.v. An Object Template Approach to Manipulation for Humanoid Avatar Robots for Rescue Tasks. Künstl Intell 30, 279–287 (2016). https://doi.org/10.1007/s13218-016-0445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-016-0445-9

Keywords

Navigation