Skip to main content
Log in

A Short Review of Symbol Grounding in Robotic and Intelligent Systems

  • Technical Contribution
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

This paper gives an overview of the research papers published in Symbol Grounding in the period from the beginning of the 21st century up 2012. The focus is in the use of symbol grounding for robotics and intelligent system. The review covers a number of subtopics, that include, physical symbol grounding, social symbol grounding, symbol grounding for vision systems, anchoring in robotic systems, and learning symbol grounding in software systems and robotics. This review is published in conjunction with a special issue on Symbol Grounding in the Künstliche Intelligenz Journal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. POETICON++ and POETICON projects (2008–2015) at http://www.poeticon.eu and http://www.csri.gr/Poeticon.

References

  1. Belpaeme T, Cowley SJ (2007) Extending symbol grounding. Interact Stud 8(1):1–6

    Article  Google Scholar 

  2. Belpaeme T, Cowley SJ, MacDorman K (eds) (2009) Symbol grounding. John Benjamins, Amsterdam

    Google Scholar 

  3. Blodow N, Goron LC, Marton Z-C, Pangercic D, Rühr T, Tenorth M, Beetz M (2011) Autonomous semantic mapping for robots performing everyday manipulation tasks in kitchen environments. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

  4. Broxvall M, Coradeschi S, Karlsson L, Saffiotti A (2004) Have another look on failures and recovery planning in perceptual anchoring. In: AAAI workshop—technical report, vol WS-04-03, pp 63–70

    Google Scholar 

  5. Broxvall M, Coradeschi S, Karlsson L, Saffiotti A (2005) Recovery planning for ambiguous cases in perceptual anchoring. In: Proceedings of the national conference on artificial intelligence, vol 3, pp 1254–1260

    Google Scholar 

  6. Broxvall M, Coradeschi S, Loutfi A, Saffiotti A (2006) An ecological approach to odour recognition in intelligent environments. In: Proceedings of IEEE international conference on robotics and automation, vol 2006, pp 2066–2071

    Google Scholar 

  7. Butko NJ, Movellan JR (2010) Detecting contingencies: an infomax approach. Neural Netw 23(8–9):973–984

    Article  Google Scholar 

  8. Cangelosi A (2005) Symbol grounding in connectionist and adaptive agent models. In: Lecture notes in computer science, vol 3526, pp 69–74

    Google Scholar 

  9. Cangelosi A (2006) The grounding and sharing of symbols. Pragmat Cogn 14(2):275–285

    Article  Google Scholar 

  10. Cangelosi A (2010) Grounding language in action and perception: from cognitive agents to humanoid robots. Phys Life Rev 7(2):139–151

    Article  Google Scholar 

  11. Cangelosi A (2011) Solutions and open challenges for the symbol grounding problem. Int J Signs Semiot Syst 1(1):49–54

    Article  Google Scholar 

  12. Cangelosie A, Harnad S (2001) The adaptive advantage of symbolic theft over sensorimotor toil: grounding language in perceptual categories. Evol Commun 4(1):117–142

    Article  Google Scholar 

  13. Cangelosi A, Riga T (2006) An embodied model for sensorimotor grounding and grounding transfer: experiments with epigenetic robots. Cogn Sci 30(4):673–689

    Article  Google Scholar 

  14. Cangelosi A, Hourdakis E, Tikhanoff V (2006) Language acquisition and symbol grounding transfer with neural networks and cognitive robots. In: IEEE international conference on neural networks—conference proceedings, pp 1576–1582

    Google Scholar 

  15. Cangelosi A, Tikhanoff V, Fontanari JF, Hourdakis E (2007) Integrating language and cognition: a cognitive robotics approach. IEEE Comput Intell Mag 2(3):65–70

    Article  Google Scholar 

  16. Clark H (1996) Using language. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Coradeschi S, Saffiotti A (2000) Anchoring symbols to sensor data: preliminary report. In: Proc of the 17th AAAI conf. AAAI Press, Menlo Park, pp 129–135

    Google Scholar 

  18. Coradeschi S, Saffiotti A (2003) An introduction to the anchoring problem. Robot Auton Syst 43(2–3):85–96

    Article  Google Scholar 

  19. Cregan AM (2007) Symbol grounding for the semantic web. In: Lecture notes in computer science, vol 4519, pp 429–442 (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

    Google Scholar 

  20. Daoutis M, Coradeshi S, Loutfi A (2009) Grounding commonsense knowledge in intelligent systems. J Ambient Intell Smart Environ 1(4):311–321

    Google Scholar 

  21. Daoutis M, Coradeschi S, Loutfi A (2012) Cooperative knowledge based perceptual anchoring. Int J Artif Intell Tools 21(3):44–87

    Article  Google Scholar 

  22. Daoutis M, Coradeschi S, Loutfi A (2012) Towards concept anchoring for cognitive robots. Intell Serv Robot 5(4):213–228

    Article  Google Scholar 

  23. Elmogy M, Habel C, Zhang J (2011) Multimodal cognitive interface for robot navigation. Cogn Process 12(1):53–65

    Article  Google Scholar 

  24. Fontanari JF, Perlovsky LI (2007) Evolving compositionality in evolutionary language games. IEEE Trans Evol Comput 11(6):758–769. cited By (since 1996), 24

    Article  Google Scholar 

  25. Fritsch J, Kleinehagenbrock M, Lang S, Plötz T, Fink GA, Sagerer G (2003) Multi-modal anchoring for human-robot-interaction. Robot Auton Syst 43(2–3):133–147 (Special issue on Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems)

    Article  Google Scholar 

  26. Galindo C, Saffiotti A, Coradeschi S, Buschka P, Fernandez-Madrigal JA, Gonzalez J (2005) Multi-hierarchical semantic maps for mobile robotics. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, IROS, pp 3492–3497

    Google Scholar 

  27. Galindo C, Fernandez-Madrigal J-A, Gonzalez J, Saffiotti A, Buschka P (2007) Life-long optimization of the symbolic model of indoor environments for a mobile robot. IEEE Trans Syst Man Cybern, Part B, Cybern 37(5):1290–1304

    Article  Google Scholar 

  28. Grollman DH, Jenkins OC, Wood F (2006) Discovering natural kinds of robot sensory experiences in unstructured environments. J Field Robot 23(11–12):1077–1089

    Article  Google Scholar 

  29. Harnad S (1990) The symbol grounding problem. Physica D, Nonlinear Phenom 42(1–3):335–346

    Article  Google Scholar 

  30. Heintz F, Doherty P (2004) Managing dynamic object structures using hypothesis generation and validation. In: Proceedings of the AAAI workshop on anchoring symbols to sensor data

    Google Scholar 

  31. Heintz F, Doherty P (2010) Federated DyKnow, a distributed information fusion system for collaborative UAVs. In: Proceedings of the international conference on control, automation, robotics and vision (ICARCV)

    Google Scholar 

  32. Heintz F, Kvarnström J, Doherty P (2009) A stream-based hierarchical anchoring framework. In: Proceedings of IROS

    Google Scholar 

  33. Heintz F, Kvarnström J, Doherty P (2010) Bridging the sense-reasoning gap: DyKnow—stream-based middleware for knowledge processing. Adv Eng Inform 24(1):14–26

    Article  Google Scholar 

  34. Johnston B, Yang F, Mendoza R, Chen X, Williams M-A (2008) Ontology based object categorization for robots. In: Lecture notes in computer science, vol 5345, pp 219–231 (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

    Google Scholar 

  35. Karlsson L, Bouguerra A, Broxvall M, Coradeschi S, Saffiotti A (2008) To secure an anchor—a recovery planning approach to ambiguity in perceptual anchoring. AI Commun 21(1):1–14

    MathSciNet  Google Scholar 

  36. Kittler J, Shevchenko M, Windridge D (2006) Visual bootstrapping for unsupervised symbol grounding. In: Lecture notes in computer science, vol 4179, pp 1037–1046 (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

    Google Scholar 

  37. LeBlanc K, Saffiotti A (2007) Cooperative information fusion in a network robot system. In: Proc of the int conf on robot communication and coordination (RoboComm), Athens, Greece. Online at http://www.aass.oru.se/~asaffio/

    Google Scholar 

  38. Lemaignan S, Alami R, Pandey AK, Warnier M, Guitton J (2012) Towards grounding human-robot interaction. In: Bridges between the methodological and practical work of the robotics and cognitive systems communities—from sensors to concepts. Intelligent systems reference library. Springer, Berlin

    Google Scholar 

  39. Lemaignan S, Ros R, Sisbot EA, Alami R, Beetz M (2012) Grounding the interaction: anchoring situated discourse in everyday human-robot interaction. Int J Soc Robot 4(2):181–199

    Article  Google Scholar 

  40. Loutfi A, Coradeschi S (2005) Improving odour analysis through human-robot cooperation. In: Proceedings—IEEE international conference on robotics and automation, vol 2005, pp 4443–4449

    Google Scholar 

  41. Loutfi A, Coradeschi S (2006) Smell, think and act: a cognitive robot discriminating odours. Auton Robots 20(3):239–249

    Article  Google Scholar 

  42. Loutfi A, Coradeschi S (2008) Odor recognition for intelligent systems. IEEE Intell Syst 23(1):41–48

    Article  Google Scholar 

  43. Loutfi A, Coradeschi S, Daoutis M, Melchert J (2008) Using knowledge representation for perceptual anchoring in a robotic system. Int J Artif Intell Tools 17(5):925–944

    Article  Google Scholar 

  44. Melchert J, Coradeschi S, Loutfi A (2007) Knowledge representation and reasoning for perceptual anchoring. In: Proceedings—international conference on tools with artificial intelligence, ICTAI, vol 1, pp 129–136

    Chapter  Google Scholar 

  45. Melchert J, Coradeschi S, Loutfi A (2007) Spatial relations for perceptual anchoring. In: AISB’07: artificial and ambient intelligence, pp 459–463

    Google Scholar 

  46. Moratz R (2006) Intuitive linguistic joint object reference in human-robot interaction: human spatial reference systems and function-based categorisation for symbol grounding. In: Proceedings of the national conference on artificial intelligence, vol 2, pp 1483–1488

    Google Scholar 

  47. Nagai Y (2006) Learning for joint attention helped by functional development. Adv Robot 20(10):1165–1181

    Article  Google Scholar 

  48. Nagai Y, Rohlfing KJ (2009) Computational analysis of motionese: towards scaffolding robot action learning. IEEE Trans Autom Ment Dev 1(1):44–54

    Article  Google Scholar 

  49. Nakamura T, Araki T, Nagai T, Iwahashi N (2011) Grounding of word meanings in latent Dirichlet allocation-based multimodal concepts. Adv Robot 25(17):2189–2206

    Article  Google Scholar 

  50. Nakamura T, Nagai T, Iwahashi N (2009) Grounding of word meanings in multimodal concepts using lda. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, pp 3943–3948

    Chapter  Google Scholar 

  51. Needham CJ, Santos PE, Magee DR, Devin V, Hogg DC, Cohn AG (2005) Protocols from perceptual observations. Artif Intell 167(1–2):103–136. cited By (since 1996), 19

    Article  Google Scholar 

  52. Ninio A, Snow C (1996) Pragmatic development. Essays in developmental science series. Westview Press, Boulder

    Google Scholar 

  53. Nyga D, Tenorth M, Beetz M (2009) Understanding and executing instructions for everyday manipulation tasks from the World Wide Web. In: ICRA

    Google Scholar 

  54. Oladell M, Huber M (2012) Symbol generation and grounding for reinforcement learning agents using affordances and dictionary compression. In: Proceedings of the 25th international Florida Artificial Intelligence Research Society conference, FLAIRS-25, pp 132–135

    Google Scholar 

  55. Pastra K (2004) Viewing vision-language integration as a double-grounding case. In: AAAI Fall symposium—technical report, vol FS-04-01, pp 62–69

    Google Scholar 

  56. Pastra K (2005) Vision-language integration: a double-grounding case. PhD thesis, Department of Computer Science, University of Sheffield

  57. Pastra K (2008) Praxicon: the development of a grounding resource. In: Proceedings of the international workshop on human-computer conversation, Bellagio, Italy

    Google Scholar 

  58. Pastra K (2010) From lexicon to praxicon: language-action-image semantic relations. In: Potagas K, Evdokimidis I (eds) Conversations on language and action. Aiginiteion series

    Google Scholar 

  59. Pastra K, Aloimonos Y (eds) (2010) Technical report of the AAAI 2011 workshop on “Language-action tools for cognitive artificial agents: integrating vision, action and language”. AAAI, Menlo Park

    Google Scholar 

  60. Pastra K, Aloimonos Y (2012) The minimalist grammar of action. Philos Trans R Soc Lond B, Biol Sci 367(1585):103–117

    Article  Google Scholar 

  61. Pastra K, Dimitrakis P, Balta E, Karakatsiotis G (2010) Praxicon and its language-related modules. In: Proceedings of companion volume of the 6th Hellenic conference on artificial intelligence (SETN), pp 27–32

    Google Scholar 

  62. Pastra K, Balta E, Dimitrakis P, Karakatsiotis G (2011) Embodied language processing: a new generation of language technology. In: Proceedings of the AAAI 2011 international workshop on “Language-action tools for cognitive artificial agents: integrating vision, action and language”

    Google Scholar 

  63. Schillingmann L, Wrede B, Rohlfing KJ (2009) A computational model of acoustic packaging. IEEE Trans Auton Ment Dev 1(4)

  64. Shapiro SC, Ismail HO (2003) Anchoring in a grounded layered architecture with integrated reasoning. Robot Auton Syst 43(2–3):97–108

    Article  Google Scholar 

  65. Steels L, Belpaeme T (2005) Coordinating perceptually grounded categories through language: a case study for colour. Behav Brain Sci 28(4):469–489

    Google Scholar 

  66. Stramandinoli F, Cangelosi A, Marocco D (2011) Towards the grounding of abstract words: a neural network model for cognitive robots. In: Proceedings of the international joint conference on neural networks, pp 467–474

    Google Scholar 

  67. Stramandinoli F, Marocco D, Cangelosi A (2012) The grounding of higher order concepts in action and language: a cognitive robotics model. Neural Netw 32:165–173

    Article  Google Scholar 

  68. Swarup S, Lakkaraju K, Ray SR, Gasser L (2006) Symbol grounding through cumulative learning. In: Lecture notes in computer science, vol 4211, pp 180–191 (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

    Google Scholar 

  69. Taddeo M, Floridi L (2005) Solving the symbol grounding problem: a critical review of fifteen years of research. J Exp Theor Artif Intell 17(4):419–445

    Article  Google Scholar 

  70. Tellex S, Kollar T, Dickerson S, Walter MR, Banerjee AG, Teller S, Roy N (2011) Approaching the symbol grounding problem with probabilistic graphical models. AI Mag 32(4):64–76

    Google Scholar 

  71. Tenorth M, Beetz M (2009) Towards practical and grounded knowledge representation systems for autonomous household robots. In: ICRA

    Google Scholar 

  72. Tomasello M (2003) Constructing language: a usage-based theory of language acquisition. Cambridge

  73. Vavrecka M, Farkas I, Lhotska L (2011) Bio-inspired model of spatial cognition. In: Lecture notes in computer science, vol 7062, pp 443–450 (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

    Google Scholar 

  74. Vogt P (2002) The physical symbol grounding problem. Cogn Syst Res 3(3):429–457

    Article  Google Scholar 

  75. Vogt P (2003) Anchoring of semiotic symbols. Robot Auton Syst 43(2–3):109–120

    Article  Google Scholar 

  76. Vogt PA, Divina F (2007) Social symbol grounding and language evolution. Interact Stud 8(1):31–52

    Article  Google Scholar 

  77. Vogt P, Haasdijk E (2010) Modelling social learning of language and skills. Artif Life 16(4):289–309

    Article  Google Scholar 

  78. Yu C, Ballard DH (2004) On the integration of grounding language and learning objects. In: Proceedings of the national conference on artificial intelligence, pp 488–493

    Google Scholar 

Download references

Acknowledgements

We would like to thank Tony Belpaeme, Fredrik Heintz, Sven Albrecht, Angelo Cangelosi, Paul Vogt, Katerina Pastra and Séverin Lemaignan for their helpful comments to improve the article and make it more complete.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Coradeschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coradeschi, S., Loutfi, A. & Wrede, B. A Short Review of Symbol Grounding in Robotic and Intelligent Systems. Künstl Intell 27, 129–136 (2013). https://doi.org/10.1007/s13218-013-0247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-013-0247-2

Keywords

Navigation