Skip to main content
Log in

In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The end-products of dietary carbohydrate fermentation catalysed by rumen microflora can serve as the primary source of energy for ruminants. However, ruminants provided with continuous carbohydrate-containing feed can develop a metabolic disorder called “acidosis”. We have evaluated the fermentation pattern of both soluble monomeric and non-soluble polymeric carbohydrates in the rumen in in vitro fermentation trials. We found that acidosis could occur within 6 h of incubation in the rumen culture fermenting sugars and starch. The formation of lactic acid and acetic acid, either alone or in mixture with ethanol, accounted for high build-up of acid in the rumen. Acidosis resulted even when only 20% of a normal daily feed load for all soluble and non-soluble carbohydrates was provided. DNA-based microbial analysis revealed that Prevotella was the dominant microbial species present in the rumen fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (APHA) (2012) Standard method for the examination of water and wastewater, 22nd edn. APHA, AWWA, WPCF, Washington D.C.

  • Bao H, Jiang L, Chen C, Yang C, He Z, Feng Y, Wang A (2015) Combination of ultrasound and Fenton treatment for improving the hydrolysis and acidification of waste activated sludge. RSC Adv 5(60):48468–48473

    Article  CAS  Google Scholar 

  • Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ (2012) Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nut 142(9):1684–1692

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. NatMeth 7(5):335–336

    CAS  Google Scholar 

  • Crichlow EC, Chaplin RK (1985) Ruminal lactic acidosis: Relationship of forestomach motility to nondissociated volatile fatty acids levels. Am J Vet Res 46(9):1908–1911

    CAS  PubMed  Google Scholar 

  • Cullen AJ, Harmon DL, Nagaraja TG (1986) In vitro fermentation of sugars, grains, and by-product feeds in relation to initiation of ruminal lactate Production1. J Dairy Sci 69(10):2616–2621

    Article  CAS  PubMed  Google Scholar 

  • Danscher AM, Li S, Andersen PH, Khafipour E, Kristensen NB, Plaizier JC (2015) Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet Scand 57(39):1–14

    CAS  Google Scholar 

  • Department of Primary Industries NSW (2016) Animals and livestock, feeding management. http://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/feed/lotfeeding/feed-mgt. Accessed 17 Aug 2016

  • Elam CJ (1976) Acidosis in feedlot cattle: Practical observations. J Anim Sci 43(4):898–901

    Article  CAS  PubMed  Google Scholar 

  • Feria-Gervasio D, Tottey W, Gaci N, Alric M, Cardot JM, Peyret P, Brugère JF (2014) Three-stage continuous culture system with a self-generated anaerobia to study the regionalized metabolism of the human gut microbiota. J Microbiol Method 96:111–118

    Article  CAS  Google Scholar 

  • Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, DeSilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzolin R, Dehority BA (2010) The role of pH on the survival of rumen protozoa in steers. Rev Bras Zootecnia 39(10):2262–2267

    Article  Google Scholar 

  • Garrett EF, Pereira MN, Nordlund KV, Armentano LE, Goodger WJ, Oetzel GR (1999) Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J Dairy Sci 82(6):1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Gozho GN, Krause DO, Plaizier JC (2007) Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J Dairy Sci 90(2):856–866

    Article  CAS  PubMed  Google Scholar 

  • Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, Cavanaugh CM (2011) Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J 5(1):20–29

    Article  PubMed  Google Scholar 

  • Hernandez JD, Scott PT, Shephard RW, Al Jassim RAM (2008) The characterization of lactic acid producing bacteria from the rumen of dairy cattle grazing on improved pasture supplemented with wheat and barley grain. J Appl Microbiol 104(6):1754–1763

    Article  CAS  PubMed  Google Scholar 

  • Hishinuma F, Kanegasaki S, Takahashi H (1968) Ruminal fermentation and sugar concentrations: a model experiment with Selenomonas ruminantium. Agric Biol Chem 32(11):1325–1330

    CAS  Google Scholar 

  • Hobson PN (1965) Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. Microbiology 38(2):167–180

    CAS  Google Scholar 

  • Hobson PN, Summers R (1967) The continuous culture of anaerobic bacteria. Microbiology 47(1):53–65

    CAS  Google Scholar 

  • Janssen PH, Evers S, Rainey FA, Weiss N, Ludwig W, Harfoot CG, Schink B (1995) Lactosphaera gen. Nov., a new genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii Schink 1984 to Lactosphaera pasteurii comb. nov. Int J Syst Evol Microbiol 45(3):565–571

    CAS  Google Scholar 

  • Kahlert H, Meyer G, Albrecht A (2016) Colour maps of acid–base titrations with colour indicators: How to choose the appropriate indicator and how to estimate the systematic titration errors. ChemTexts 2(2):1–28

    Article  CAS  Google Scholar 

  • Kashongwe, OB, Bebe BO, Matofari JW, Huelsebusch CG (2017) Effects of feeding practices on milk yield and composition in peri-urban and rural smallholder dairy cow and pastoral camel herds in Kenya. Trop Anim Health and Prod 49(5);909–914

  • Khezri A, Rezayazdi K, Mesgaran MD, Moradi-Sharbabk M (2009) Effect of different rumen-degradable carbohydrates on rumen fermentation, nitrogen metabolism and lactation performance of Holstein dairy cows. Asian-Aust J Anim Sci 22(5):651–658

    Article  CAS  Google Scholar 

  • Kolver ES, De Veth MJ (2002) Prediction of ruminal pH from pasture-based diets. J Dairy Sci 85(5):1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Lettat A, Nozière P, Silberberg M, Morgavi DP, Berger C, Martin C (2010) Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep. J Anim Sci 88(9):3041–3046

  • Li M, Penner GB, Hernandez-Sanabria E, Oba M, Guan LL (2009) Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 107(6):1924–1934

    Article  CAS  PubMed  Google Scholar 

  • Malestein AAT, Van’t K, Counotte GHM, Prins RA (1982) Concentrate feeding and ruminal fermentation, 2: Influence of concentrate ingredients on pH and on L-lactate concentration in incubations in vitro with rumen fluid. Neth J Agric Sci 30:259

    CAS  Google Scholar 

  • Mitsumori M, Sun W (2008) Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust J Anim Sci 21(1):144–154

    Article  CAS  Google Scholar 

  • Nagaraja TG, Taylor MB (1987) Susceptibility and resistance of ruminal bacteria to antimicrobial feed additives. Appl Environ Microbiol 53(7):1620–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel R, Traub RJ, Allcock RJ, Kwan MM, Bielefeldt-Ohmann H (2016) Comparison of faecal microbiota in Blastocystis-positive and Blastocystis-negative irritable bowel syndrome patients. Microbiome 4(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  • Oba M (2011) Review: Effects of feeding sugars on productivity of lactating dairy cows. Can J Anim Sci 9(1):37–46

    Article  Google Scholar 

  • Oba M, Allen MS (2003) Effects of corn grain conservation method on feeding behavior and productivity of lactating dairy cows at two dietary starch concentrations. J Dairy Sci 86(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JSD, Queiroz ACD, Mantovani HC, Melo MRD, Detmann E, Santos EM, Bayão GFV (2011) Effect of propionic and lactic acids on in vitro ruminal bacteria growth. Rev Bras Zootecnia 40(5):1121–1127

    Article  Google Scholar 

  • Olson JD (1997) The relationship between nutrition and management to lameness in dairy cattle. Bovine Pract 31:65–68

    Google Scholar 

  • Owens FN, Secrist DS, Hill WJ, Gill DR (1998) Acidosis in cattle: A review. J Anim Sci 76:275–286

    Article  CAS  PubMed  Google Scholar 

  • Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet J 176(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Qadis AQ, Satoru GOYA, Ikuta K, Yatsu M, Kimura A, Nakanishi S, Shigeru SATO (2014) Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. J Vet Med Sci 76(6):877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell JB, Wilson DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79(8):1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Slyter LL (1976) Influence of acidosis on rumen function. J Anim Sci 43(4):910–929

    Article  CAS  PubMed  Google Scholar 

  • Somkuti GA, Steinberg DH (2003) Pediocin production by recombinant lactic acid bacteria. Biotechnol Lett 25(6):473–477

    Article  CAS  PubMed  Google Scholar 

  • Sutton JD (1968) The fermentation of soluble carbohydrates in rumen contents of cows fed diets containing a large proportion of hay. Br J Nutr 22(04):689–712

    Article  CAS  PubMed  Google Scholar 

  • Weisbjerg MR, Hvelplund T, Bibby BM (1998) Hydrolysis and fermentation rate of glucose, sucrose and lactose in the rumen. Acta Agric Scand A Anim Sci 48(1):12–18

    CAS  Google Scholar 

  • Ye JA, Liu JX, Ya J (1996) The effects of ammoniated rice straw diets supplemented with Chinese milk vetch silage on rumen fermentation and microflora in sheep. Livestock Res Rural Dev 8(4):45–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darwin.

Electronic supplementary material

ESM 1

(DOCX 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwin, Barnes, A. & Cord-Ruwisch, R. In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis. Ann Microbiol 68, 1–8 (2018). https://doi.org/10.1007/s13213-017-1307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-017-1307-x

Keywords

Navigation