Skip to main content
Log in

Enhancing carotenoid production in Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Rhodotorula mucilaginosa has been considered as a potential industrial yeast due to its unicellular and fast-growing characteristics, and its ability to produce carotenoids, including torularhodin. However, its low total carotenoid production limits its commercial application. In this study, mutation breeding and metabolic engineering were employed to enhance carotenoid production in the R. mucilaginosa strain KC8. After chemical–physical mutagenesis, R. mucilaginosa K4 with a 67% greater concentration of carotenoids (14.47 ± 0.06 mg L−1) than R. mucilaginosa KC8 (8.67 ± 0.07 mg L−1) was obtained. To further enhance carotenoid production, gene HMG1 encoding the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was introduced from another yeast, Saccharomyces cerevisiae, and overexpressed in R. mucilaginosa K4. The carotenoid production of HMG1-gene-overexpression transformant G1 reached 16.98 mg L−1. To relieve the feedback inhibition of ergosterol, and to down-regulate ergosterol synthesis, ketoconazole, an ergosterol synthesis inhibitor, was added at a concentration of 28 mg L−1. The carotenoid production of the transformant G1 reached 19.14 ± 0.09 mg L−1, which was 121% higher than in R. mucilaginosa KC8. This suggests that a combination of chemical–physical mutagenesis, overexpression of the HMG1 gene, and adding ketoconazole is an effective strategy to improve carotenoid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aksu Z, Eren AT (2005) Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem 40:2985–2991

    Article  CAS  Google Scholar 

  • An GG, Jang BG, Jang BG (2001) Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses. J Biosci Bioeng 92:121–125

    Article  CAS  PubMed  Google Scholar 

  • Boucher Y, Doolittle WF (2000) The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol 37:703–716

    Article  CAS  PubMed  Google Scholar 

  • Breierová E, Gregor T, Marová I, Certík M, Kogan G (2008) Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass. Chem Biodivers 5:440–446

    Article  PubMed  Google Scholar 

  • Disch A, Rohmer M (1998) On the absence of the glyceraldehyde 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol Lett 168:201–208

    Article  CAS  PubMed  Google Scholar 

  • Du C, Li Y, Guo Y, Han M, Zhang W, Qian H (2015) The suppression of Torulene and Torularhodin treatment on the growth of PC-3 xenograft prostate tumors. Biochem Biophys Res Commun 469:1146–1152

    Article  PubMed  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  PubMed  Google Scholar 

  • Frengova G, Simova E, Beshkova D (2004) Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Appl Biochem Biotechnol 112:133–141

    Article  CAS  PubMed  Google Scholar 

  • Gardner RG, Hampton RY (1999) A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase in eukaryotes. J Biol Chem 274:31671–31678

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  • Homann V et al (1996) The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet 30:232–239

    Article  CAS  PubMed  Google Scholar 

  • Irazusta V, Nieto-Peñalver CG, Cabral ME, Amoroso MJ, Figueroa LICD (2013) Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochem 48:803–809

    Article  CAS  Google Scholar 

  • Issa S, Alhajali A, Alamir L (2016) Improving carotenoid pigments production in Rhodotorula mucilaginosa using UV irradiation. Int Food Res J 23:873–878

    CAS  Google Scholar 

  • Jeon YC, Cho CW, Yun YS (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol 39:490–495

    Article  CAS  Google Scholar 

  • Kondo K, Saito T, Kajiwara S, Takagi M, Misawa N (1995) A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J Bacteriol 177:7171–7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong K-W, Khoo H-E, Prasad KN, Ismail A, Tan C-P, Rajab NF (2010) Revealing the power of the natural red pigment lycopene. Molecules 15:959–987

    Article  CAS  PubMed  Google Scholar 

  • Kuzina V, Cerda-Olmedo E (2006) Modification of sexual development and carotene production by acetate and other small carboxylic acids in Blakeslea trispora and Phycomyces blakesleeanus. Appl Environ Microb 72:4917–4922

    Article  CAS  Google Scholar 

  • Libkind D, van Broock M (2006) Biomass and carotenoid pigment production by Patagonian native yeasts. World J Microbiol Biotechnol 22:687–692

    Article  CAS  Google Scholar 

  • Liu D, Jingyun W, Xia W, Haiqing Z, Linlin W, Qingxiang Y (2016) Mutation breeding of yeast with high lipid production by atmospheric and room temperature plasmas (in Chinese). Food Res Dev 37:164–169

  • Lu Y et al (2011) Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J 55:17–22

    Article  CAS  Google Scholar 

  • Maldonade IR, Rodriguezamaya DB, Scamparini AR (2012) Statistical optimisation of cell growth and carotenoid production by Rhodotorula mucilaginosa. Braz J Microbiol 43:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannazzu I, Landolfo S, Silva TLD, Buzzini P (2015) Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31:1–9

    Article  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang W, Ling-Ran F, Luo W, Han-Guang L, Lin W, Ya Z, Yu XB (2014) Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl Biochem Biotechnol 174:452–460

    Article  CAS  PubMed  Google Scholar 

  • Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523

    Article  CAS  PubMed  Google Scholar 

  • Rao A, Agarwal S (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review. Nutr Res 19:305–323

    Article  CAS  Google Scholar 

  • Rao AV, Agarwal S (2000) Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr 19:563–569

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Albert J, Cerdá-Olmedo E, Corrochano L (2002) Genes for mevalonate biosynthesis in Phycomyces. Mol Gen Genomics 266:768–777

    Article  CAS  Google Scholar 

  • Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

  • Simpson KL, Nakayama TO, Chichester CO (1964) Biosynthesis of yeast carotenoids. J Bacteriol 88:1688–1694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Okada H, Abe K, Kera Y (2014) Genetic transformation of the yeast Rhodotorula gracilis ATCC 26217 by electroporation. Appl Biochem Microbiol 50:624–628

    Article  CAS  Google Scholar 

  • Tang Q, Li Y, Yuan Q-P (2008) Effects of an ergosterol synthesis inhibitor on gene transcription of terpenoid biosynthesis in Blakeslea trispora. Curr Microbiol 57:527–531

    Article  CAS  PubMed  Google Scholar 

  • Wang G-Y, Keasling JD (2002) Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng 4:193–201

    Article  CAS  PubMed  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY (2014) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98:5387–5396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the National Natural Science Foundation of China (NSFC 21477035 and NSFC 21277041), the Outstanding Talented Persons Foundation of Henan Province (144200510007), the Key Project of Natural Science of the Education Department of Henan Province, China (16A180029), and the PhD research startup foundation of Henan normal University (qd15177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxiang Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, D., Yang, Q. et al. Enhancing carotenoid production in Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering. Ann Microbiol 67, 425–431 (2017). https://doi.org/10.1007/s13213-017-1274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-017-1274-2

Keywords

Navigation