Skip to main content
Log in

Biodegradation optimization and metabolite elucidation of Reactive Red 120 by four different Aspergillus species isolated from soil contaminated with industrial effluent

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Azo dyes are recalcitrant owing to their xenobiotic nature and exhibit high resistance to degradation processes. In the present study, different Aspergillus species (A. flavus, A. fumigatus, A. niger, and A. terreus) isolated from soil samples contaminated with industrial effluent, collected from Jeddah, Saudi Arabia, were analyzed for azo dye, Reactive Red 120 (RR120) biodegradation. The physicochemical parameters such as carbon (sucrose) and nitrogen (ammonium sulfate) sources, pH, and temperature affecting the biodegradation of RR120 were optimized using central composite design–response surface methodology (CCD-RSM). The maximum RR120 degradation was found to be 84% (predicted) at the optimum level of sucrose (11.73 g/L), ammonium sulfate (1.26 g/L), pH (5.71), and temperature (28.26 °C). Further, the validation results confirmed that the predicted values are in good agreement with the experimental results for RR120 degradation by A. flavus (86%), A. fumigatus (84%), A. niger (85%), and A. terreus (86%). The metabolic product of RR120 after biodegradation by different Aspergillus species was identified as sodium 2-aminobenzenesulfonate. The present study suggests that Aspergillus species are good candidates for azo dye-loaded effluent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adnan LA, Sathishkumar P, Mohd Yusoff AR, Hadibarata T (2015) Metabolites characterisation of laccase mediated reactive black 5 biodegradation by fast growing ascomycete fungus Trichoderma atroviride F03. Int Biodeterior Biodegrad 104:274–282

    Article  CAS  Google Scholar 

  • Adnan LA, Hadibarata T, Sathishkumar P, Mohd Yusoff AR (2016) Biodegradation pathway of Acid Red 27 by white-rot fungus Armillaria sp. F022 and phytotoxicity evaluation. CSAWAC 44:239–246

    CAS  Google Scholar 

  • Almeida EJ, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322

    Article  CAS  PubMed  Google Scholar 

  • Ambrosio ST, Campos-Takaki GM (2004) Decolorization of reactive azo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions. Bioresour Technol 91:69–75

    Article  CAS  PubMed  Google Scholar 

  • Balan K, Sathishkumar P, Palvannan T (2012) Decolorization of malachite green by laccase: optimization by response surface methodology. J Taiwan Inst Chem Eng 43:776–782

    Article  CAS  Google Scholar 

  • Benigni R, Giuliani A, Franke R, Gruska A (2000) Quantitative structure–activity relationships of mutagenic and carcinogenic aromatic amines. Chem Rev 100:3697–3714

    Article  CAS  PubMed  Google Scholar 

  • Chang SH, Wu CH, Wang SS, Lin CW (2017) Fabrication of novel rhamnolipid-oxygen-releasing beads for bioremediation of groundwater containing high concentrations of BTEX. Int Biodeterior Biodegrad 116:58–63

    Article  CAS  Google Scholar 

  • Coman G, Bahrim G (2011) Optimization of xylanase production by streptomyces sp. P12-137 using response surface methodology and central composite design. Ann Microbiol 61:773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabiszewska AU, Kotyrba D, Nowak D (2015) Assortment of carbon sources in medium for yarrowia lipolytica lipase production: a statistical approach. Ann Microbiol 65:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Ganesh R, Boardman GD, Michelsen D (1994) Fate of azo dyes in sludges. Water Res 28:1367–1376

    Article  CAS  Google Scholar 

  • Jin X, Ning Y (2013) Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J Hazard Mater 262:870–877

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12:75–97

    Article  CAS  Google Scholar 

  • Krishnan J, Kishore AA, Suresh A, Madhumeetha B, Prakash DG (2016) Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. Int Biodeterior Biodegrad. doi:10.1016/j.ibiod.2016.11.024

    Google Scholar 

  • Poonkuzhali K, Sathishkumar P, Boopathy R, Palvannan T (2011) Aqueous state laccase thermostabilization using carbohydrate polymers: effect on toxicity assessment of azo dye. Carbohydr Polym 85:341–348

    Article  CAS  Google Scholar 

  • Rodríguez-Couto S (2012) A promising inert support for laccase production and decolouration of textile wastewater by the white-rot fungus Trametes pubescesns. J Hazard Mater 233–234:158–162

    Article  PubMed  Google Scholar 

  • Ryu BH, Weon YD (1992) Decolorization of azo dyes by Aspergillus sojae B-10. J Microbiol Biotechnol 2:215–219

    CAS  Google Scholar 

  • Saadon SA, Sathishkumar P, Yusoff ARM, Wirzal MDH, Rahmalan MT, Nur H (2016) Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment. Environ Technol 37:1875–1882

    Article  Google Scholar 

  • Saroj S, Kumar K, Pareek N, Prasad R, Singh RP (2014) Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere 107:240–248

    Article  CAS  PubMed  Google Scholar 

  • Sathishkumar P, Arulkumar M, Palvannan T (2012) Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye remazol brilliant blue R (RBBR). J Clean Prod 22:67–75

    Article  CAS  Google Scholar 

  • Sathishkumar P, Balan K, Palvannan T, Kamala-Kannan S, Oh B-T, Rodríguez-Couto S (2013) Efficiency of Pleurotus florida laccase on decolorization and detoxification of the reactive dye Remazol Brilliant Blue R (RBBR) under optimized conditions. CSAWAC 41:665–672

    CAS  Google Scholar 

  • Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh BT (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120

    Article  CAS  Google Scholar 

  • Sathishkumar P, Hemalatha S, Arulkumar M, Ravikumar R, Mohd Yusoff AR, Hadibarata T, Palvannan T (2015) Curcuminoid extraction from turmeric (Curcuma longa L.): efficacy of bromine-modified curcuminoids against food spoilage flora. J Food Biochem 39:325–333

    Article  CAS  Google Scholar 

  • Sharma P, Singh L, Dilbaghi N (2009) Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J Hazard Mater 161:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suwannaruang T, Rivera KKP, Neramittagapong A, Wantala K (2015) Effects of hydrothermal temperature and time on uncalcined TiO2 synthesis for reactive red 120 photocatalytic degradation. Surf Coat Technol 271:192–200

    Article  CAS  Google Scholar 

  • Vyrides I, Bonakdarpour B, Stuckey DC (2014) Salinity effects on biodegradation of reactive black 5 for one stage and two stages sequential anaerobic aerobic biological processes employing different anaerobic sludge. Int Biodeterior Biodegrad 95:294–300

    Article  CAS  Google Scholar 

  • Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL (2009) Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad 63:395–399

    Article  CAS  Google Scholar 

  • Yagub MT, Sen TK, Ang HM (2012) Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water Air Soil Pollut 223:5267–5282

    Article  CAS  Google Scholar 

  • Zhang FM, Knapp JS, Tapley KN (1999) Decolourisation of cotton bleaching effluent with wood rotting fungus. Water Res 33:919–928

    Article  CAS  Google Scholar 

  • Zheng Z, Levin RE, Pinkham JL, Shetty K (1999) Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem 34:31–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group NO (RGP-1438-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuad Ameen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclosures

The manuscript does not contain clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameen, F., Alshehrei, F. Biodegradation optimization and metabolite elucidation of Reactive Red 120 by four different Aspergillus species isolated from soil contaminated with industrial effluent. Ann Microbiol 67, 303–312 (2017). https://doi.org/10.1007/s13213-017-1259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-017-1259-1

Keywords

Navigation