Skip to main content
Log in

Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Microbial consumption of high-concentration dimethyl sulfide (DMS) under various redox conditions was investigated with freshwater sediments as inoculum. After about 1-year cyclic static enrichment at an initial DMS concentration of 10 mM, it was found that addition of ferric iron can lead to better DMS degradation efficiency compared to bicarbonate, nitrate, and oxygen as the electron acceptors especially, significantly higher than sulfate addition. The rate constant of DMS degradation was only 0.01106 ± 0.00139 day−1 under sulfate reduction, but increased to 0.02355 ± 0.00173 day−1 under iron reduction. Enriched bacterial communities under both aerobic and iron-reducing conditions were highly organized. Thus, the specialized bacterial communities were responsible for the different degradation conditions. The genera Thiobacillus and Pseudomona, which had been found previously to be capable of DMS degradation, belong to the most abundant bacteria in the aerobic microbial community. In the iron-reducing community, the four genera Oscillospira, Bacteroides, Parabacteroides, and Petrimonas are dominant, and in total account for 88 % of the total bacterial sequences. Species from the four anaerobic genera might be involved in ferric reduction and/or high-concentration DMS degradation. Thus, sediments in eutrophic lakes might harbor a diverse of functionally specific bacteria for DMS degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achtnich C, Bak F, Conrad R (1995) Competition for electron-donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19(1):65–72

    Article  CAS  Google Scholar 

  • Bernard L, Chapuis-Lardy L, Razafimbelo T, Razafindrakoto M, Pablo AL et al (2012) Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J 6:213–222

    Article  CAS  PubMed  Google Scholar 

  • Cai HY, Jiang HL, Krumholz LR, Yang Z (2014) Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. Plos One 9(8)

  • Cantau C, Larribau S, Pigot T, Simon M, Maurette MT, Lacombe S (2007) Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization. Catal Today 122:27–38

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung YC, Cheng CY, Chen TY, Hsu JS, Kui CC (2010) Structure of the bacterial community in a biofilter during dimethyl sulfide (DMS) removal processes. Bioresour Technol 101:7165–7168

    Article  CAS  Google Scholar 

  • Endoh T, Kasuga K, Horinouchi M, Yoshida T, Habe H, Nojiri H, Omori T (2003) Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Appl Microbiol Biotechnol 62:83–91

    Article  CAS  PubMed  Google Scholar 

  • Glindemann D, Novak J, Witherspoon J (2006) Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): the North-East WPCP Plant of Philadelphia. Environ Sci Technol 40:202–207

    Article  CAS  PubMed  Google Scholar 

  • Green DH, Shenoy DM, Hart MC, Hatton AD (2011) Coupling of dimethylsulfide oxidation to biomass production by a marine flavobacterium. Appl Environ Microbiol 77:3137–3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haaijer SCM, Harhangi HR, Meijerink BB, Strous M, Pol A, Smolders AJP et al (2008) Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. ISME J 2:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Hatton AD, Darroch L, Malin G (2004) The role of dimethylsulphoxide in the marine biogeochemical cycle of dimethylsulphide. Oceanogr Mar Biol Annu Rev 42:29–55

    Article  Google Scholar 

  • Iino T, Mori K, Tanaka K, Suzuki K-I, Harayama S (2007) Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 57(8):1840–1845

    Article  PubMed  Google Scholar 

  • Jiang HL, Tay JH, Maszenan AM, Tay STL (2004) Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol 70:6767–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson FH, Ussery DW, Nielsen J, Nookaew I (2011) A closer look at Bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Microb Ecol 61:473–485

    Article  PubMed  Google Scholar 

  • Lecloirec P, Horny P, Ladousse A (1992) Anaerobic biological removal of dimethyldisulfide in a chemical process waste-water. Water Sci Technol 26:2069–2072

    CAS  Google Scholar 

  • Li CH, Wong YS, Tam NFY (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry. Bioresour Technol 101:8083–8092

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Roling WFM (2007) Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ Microbiol 9:1956–1968

    Article  CAS  PubMed  Google Scholar 

  • Lomans BP, van der Drift C, Pol A, den Camp HJMO (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci 59:575–588

    Article  CAS  PubMed  Google Scholar 

  • Lomans BP, Smolders AJP, Intven LM, Pol A, den Camp HJMO, van der Drift C (1997) Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 63:4741–4747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomans BP, denCamp HJMO, Pol A, Vogels GD (1999a) Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 65:438–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomans BP, Op den Camp HJM, Pol A, van der Drift C, Vogels GD (1999b) Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 65(5):2116–2121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Fan CX, Shang JG, Deng JC, Yin HB (2012) Headspace solid-phase microextraction for the determination of volatile sulfur compounds in odorous hyper-eutrophic freshwater lakes using gas chromatography with flame photometric detection. Microchem J 104:26–32

    Article  CAS  Google Scholar 

  • Lyimo TJ, Pol A, Harhangi HR, Jetten MSM, Op den Camp HJM (2009) Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria. FEMS Microbiol Ecol 70:483–492

    Article  CAS  PubMed  Google Scholar 

  • Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69:6808–6815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44(6):1270–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M et al (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Paster BJ, Dewhirst FE, Olsen I, Fraser GJ (1994) Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp and related bacteria. J Bacteriol 176:725–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–U70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  • Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41(8):1733–1748

    Article  CAS  Google Scholar 

  • Schafer H (2007) Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol 73:2580–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulphide and related C-1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot 61:315–334

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. Plos One 6(12)

  • Tanimoto Y, Bak F (1994) Anaerobic degradation of Methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria. Appl Environ Microbiol 60:2450–2455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G (2012) Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 14:2379–2394

    Article  CAS  PubMed  Google Scholar 

  • van Leerdam RC, de Bok FAM, Lomans BP, Stams AJM, Lens PNL, Janssen AJH (2006) Volatile organic sulfur compounds in anaerobic sludge and sediments: Biodegradation and toxicity. Environ Toxicol Chem 25:3101–3109

    Article  PubMed  Google Scholar 

  • Vila-Costa M, del Valle DA, Gonzalez JM, Slezak D, Kiene RP, Sanchez O, Simo R (2006) Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria. Environ Microbiol 8:2189–2200

    Article  CAS  PubMed  Google Scholar 

  • Visscher PT, Taylor BF (1993a) A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl Environ Microbiol 59:3784–3789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PT, Taylor BF (1993b) Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium. Appl Environ Microbiol 59(12):4083–4089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PT, Taylor BF, Kiene RP (1995) Microbial consumption of dimethyl sulfide and methanethiol in coastal marine-sediments. FEMS Microbiol Ecol 18:145–153

    Article  CAS  Google Scholar 

  • Wang XJ, Yang J, Chen XP, Sun GX, Zhu YG (2009) Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. J Soils Sediments 9:568–577

    Article  Google Scholar 

  • Wang AJ, Liu LH, Sun D, Ren NQ, Lee DJ (2010) Isolation of Fe(III)-reducing fermentative bacterium Bacteroides sp W7 in the anode suspension of a microbial electrolysis cell (MEC). Int J Hydrog Energy 35:3178–3182

    Article  CAS  Google Scholar 

  • Wu CY, Chou MS, Lin JH (2014) Oxidative scrubbing of DMS-containing waste gases by hypochlorite solution. J Taiwan Inst Chem Eng 45:596–602

    Article  CAS  Google Scholar 

  • Zellner G, Stackebrandt E, Nagel D, Messner P, Weiss N, Winter J (1996) Anaerofilum pentosovorans gen nov, sp nov, and Anaerofilum agile sp nov, two new, strictly anaerobic, mesophilic, acidogenic bacteria from anaerobic bioreactors. Int J Syst Bacteriol 46:871–875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (51379199) and the 135 project of Nanjing Institute of Geography and Limnology, CAS (No. NIGLAS2012135008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Long Jiang.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Cai, H., Liu, X. et al. Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition. Ann Microbiol 66, 1199–1206 (2016). https://doi.org/10.1007/s13213-016-1207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1207-5

Keywords

Navigation