Skip to main content
Log in

Bioprospecting foliar endophytic fungi of Vitis labrusca Linnaeus, Bordô and Concord cv.

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Endophytic fungi colonize the interior of plant tissues and organs, establishing an intimate mutualistic association with no visible symptoms. The fungi may help protect the plant against herbivores and pathogens, making them potentially useful endophytes in the biological control of diseases and agricultural pests. The biotechnological interest in these organisms has stimulated research related to the bioprospecting of endophytic fungi. Grapevine is among the oldest of plants cultivated by man, with the grape being one of the most highly consumed fruits in the world. Diseases cause significant damage to grape cultures, making their integrated control important to reduce the use of pesticides and, consequently, environmental and human contamination. The rustic species Vitis labrusca L. (Vitaceae), used in the preparation of juices and wines, is highly resistant to fungal diseases. We isolated leaf endophytic fungi of the Bordô and Concord cultivars (V. labrusca L.), which were ordered into 68 and 62 morpho-groups of the Bordô and Concord cultivars, respectively. We used scanning electron microscopy to confirm the presence of endophytes in the leaves. Endophytic diversity was analyzed based on sequencing the ITS1-5.8S-ITS2 region of rDNA, allowing the identification of fungi belonging to genera including Cochliobolus, Bipolaris, Fusarium, Alternaria, Diaporthe, Phoma and Phomopsis. Phylogenetic analysis confirmed the identity of the endophytes. The biotechnological potential of endophytes was tested in vitro for the control of pathogenic fungi of grapevines including Alternaria sp., Sphaceloma sp. and Glomerella sp. Inhibition percentages above 50 % as demonstrated by some isolates demonstrate their potential for biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a,b

Similar content being viewed by others

References

  • Albrectsen BR, Björkén L, Varad A, Hagner A, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson WP, Schnitzer SA (eds) Tropical Forest Community Ecology. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  PubMed  Google Scholar 

  • Azevedo JL, Maccheroni JW, Pereira JO, Araújo WL (2000) Endophytic microrganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Badalyan SM, Innocenti G, Garibyan NG (2002) Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathol Mediterr 41:200–225

    Google Scholar 

  • Bernardi-Wenzel J, Garcia A, Azevedo JL, Pamphile JA (2013) Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria. Genet Mol Res 12(4):5072–5084

    Article  CAS  PubMed  Google Scholar 

  • Brum MCP, Araújo WL, Maki CS, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197

    Article  CAS  PubMed  Google Scholar 

  • Burruano S, Alfonzo A, Lo Piccolo S, Conigliaro G, Mondello V, Torta L, Moretti M, Assante G (2008) Interaction between Acremonium byssoides and Plasmopara viticola in Vitis vinifera. Phytopathol Mediterr 47:122–131

    Google Scholar 

  • Campanile G, Ruscelli A, Luisi N (2007) Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol 117:237–246

    Article  Google Scholar 

  • Casieri L, Hofstetter V, Viret O, Gindro K (2009) Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathol Mediterr 48:73–83

    Google Scholar 

  • Eichhorn KW, Lorenz DH (1984) Phaenologische entwicklungsstadien der rebe. EPPO 14:295–298

    Article  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197–206

    Article  CAS  Google Scholar 

  • Faostat—Food and Agriculture Organization of the United Nations (2012) Available from: http://faostat.fao.org/site/339/default.aspx. Accessed: 20 july 2014

  • Ferreira DF (2008) SISVAR: um programa para análise e ensino de estatística. Rev Científica Symp 6:36–41

    Google Scholar 

  • Garcia A, Rhoden SA, Rubin Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148

    Article  PubMed  Google Scholar 

  • Gonzáles V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42

    Article  Google Scholar 

  • Hata K, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infestes by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390

    Article  Google Scholar 

  • Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Lima TEF (2010) Micobiota endofitica de Vitis labrusca L. CV Isabel no vale do Siriji, Pernambuco, Brasil. Thesis, Universidade Federal de Pernambuco

  • Magnani M, Fernandes T, Prete CEC, Homechim M, Ono EYS, Vilas-Boas LA, Sartori D, Furlaneto MC, Fungaro MHP (2005) Molecular identification of Aspergillus spp. isolated from coffee beans. Sci Agric 62:45–49

    Article  CAS  Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983

    Article  Google Scholar 

  • Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola coplex. Sydowia 52:46–48

    Google Scholar 

  • Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C, Dambrosio M, Sanità Di Toppi L, Pertot I (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology 96:689–698

    Article  CAS  PubMed  Google Scholar 

  • Orlandelli RC, Alberto RN, Rubin Filho CJ, Pamphile JA (2012) Diversity of endophytic fungal community associated with Piper hispidum Sw. (Piperaceae) leaves. Genet Mol Res 11:1575–1585

    Article  CAS  PubMed  Google Scholar 

  • Pamphile JA, Azevedo JL (2002) Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays.L). World J Microbiol Biotechnol 18:391–396

    Article  CAS  Google Scholar 

  • Pamphile JA, Gai CS, Pileggi M, Rocha CLMSC, Pileggi SAV (2008a) Plant-microbe interactions between host and endophytes observed by scanning electron microscopy (SEM). In: Sorvari S, Pirttilä AM (eds) Prospects and Applications for Plant-Associated Microbes. A Laboratory Manual, part A: Bacteria. BBI (BioBien Innovations), Finland, pp 184–189

    Google Scholar 

  • Pamphile JA, Pileggi M, Gai CS, Rocha CLMSC, Pileggi SAV (2008b) Scanning electron microscopy (SEM). In: Sorvari S, Pirttilä AM (eds) Prospects and Applications for Plant-Associated Microbes. A Laboratory Manual, part A: Bacteria. BBI (BioBien Innovations), Finland, pp 9–13

    Google Scholar 

  • Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in Grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78:4308–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrini O (1991) Fungal endophyte of tree leaves. In: Andrews J, Hirano SS (eds) Microbial Ecology of Leaves. Spring, New York, pp 179–197

    Chapter  Google Scholar 

  • Quiroga EN, Sampietro AR, Vattuone MA (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74:89–96

    Article  CAS  PubMed  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  CAS  Google Scholar 

  • Rehman S, Mir T, Kour A, Qazi PH, Sultan P, Shawl AS (2011) In vitro antimicrobial studies of Nodulisporium specie: an endophytic fungus. J Yeast Fungal Res 2:53–58

    Google Scholar 

  • Reyes Chilpa R, Quiroz Vásquez RI, Jiménez Estrada M, Navarro-Ocaña A, Cassini Hernández J (1997) Antifungal activity of selected plant secondary metabolites against Coriolus versicolor. J Trop Forest Prod 3:110–113

    Google Scholar 

  • Rhoden SA, Garcia A, Rubin Filho CJ, Azevedo JL, Pamphile JA (2012) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11:2513–2522

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZA, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of (Mexican yew). Fungal Divers 47:65–74

    Article  Google Scholar 

  • Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araújo IS, Mattos CRR, Góes-Neto A (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47:75–84

    Article  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sandhu SS, Aharwal RP, Kumar S (2014) Isolation and antibacterial property of endophytic fungi isolated from Indian medicinal plant Calotropis procera (Linn.). World J Pharm Pharm Sci 3:678–691

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Smith D, Onions AHS (1983) The preservation and maintenance of living fungi. Page, Norwick

    Google Scholar 

  • Soejima A, Wen J (2006) Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am J Bot 93:278–287

    Article  CAS  PubMed  Google Scholar 

  • Sousa JSI (1996) Uvas para o Brasil, 2nd edn. FEALQ, Piracicaba

    Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial Endophytes. Dekker, New York, pp 3–30

    Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vaz ABM, Mota RC, Bomfim MRQ, Vieira MLA, Zani CL, Rosa CA, Rosa LH (2009) Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol 55:1381–1391

    Article  CAS  PubMed  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR Protocols. A Guide to Methods and Applications. Academic, New York, pp 315–322

    Google Scholar 

  • Živković S, Stojanović S, Ivanović Ž, Gavrilović V, Popović T, Balaž J (2010) Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci 62:611–623

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Complexo de Centrais de Apoio à Pesquisa (COMCAP/UEM) for sequencing the ITS1-5.8S-ITS2 regions and for the production of electronic scanning micrographs. We thank the EMBRAPA Uva e Vinho for the phytopathogen strains. We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Master’s scholarship for the first author and CAPES/PNPD-UEM postdoctoral scholarship. We thank CNPq (311534/2014-7; 447265/2014-8) and Fundação Araucária – FA (276/2014) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alencar Pamphile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felber, A.C., Orlandelli, R.C., Rhoden, S.A. et al. Bioprospecting foliar endophytic fungi of Vitis labrusca Linnaeus, Bordô and Concord cv.. Ann Microbiol 66, 765–775 (2016). https://doi.org/10.1007/s13213-015-1162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1162-6

Keywords

Navigation