Skip to main content
Log in

Eco-physiological and interdisciplinary approaches for empowering biobatteries

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Electrogenic bacteria have evolved with a tendency to oxidize various organic matter and donate electrons to terminal electron acceptors. This forms the basis for power generation by microbe-driven fuel cells when these electro-active bacteria interact with electrodes. Depending on an electrode's potential for oxidation of an electron donor at an anode (E ano) compared to the reduction of an electron acceptor at a cathode (E cat), a net positive/negative potential difference (ΔE) will arise. Correspondingly, a positive ΔE will result in power generation (microbial fuel cells, MFCs) while negative ΔE requires power (microbial electrolysis cells). Herein, various factors that reduce power efficiency in MFCs, compared to theoretical calculations and their troubleshooting, are discussed. Furthermore, eco-physiological studies of electrogenic bacteria, in relation to their electron transfer molecular mechanisms when grown in varying electron donor-acceptor ratios are also discussed. Hence, the information with respect to the choice of an electrogen, the type of inocula, and electrode material (depending on the terminal electron acceptor) for the development of novel MFCs is understood. Finally, improvements of anode performance in MFCs, using advances in nanotechnology were explored to generate ideas for enhancing power densities. Altogether, a combinatorial approach in the discovery of electrogenic molecular mechanisms, along with improving the existing electrode material, can significantly enhance the generation of alternative and eco-friendly electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394. doi:10.1021/es0525511

    Article  CAS  PubMed  Google Scholar 

  • Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101:469–475. doi:10.1016/j.biortech.2009.07.039

    Article  CAS  PubMed  Google Scholar 

  • Archana A, Sasikala C, Ramana Ch V (2003) Augmentation of H2 photoproduction in Rhodopseudomonas palustris by N-heterocyclic aromatic compounds. Biotechnol Lett 25:79–82

    Article  CAS  PubMed  Google Scholar 

  • Bigalke J, Grabner EW (1997) The geobattery model: a contribution to large scale electrochemistry. Electrochim Acta 42:3443–3452. doi:10.1016/S0013-4686(97)00053-4

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler J, Young N, Lovley D (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by gram-positive bacteria. Proc Natl Acad Sci U S A 109:1702–1707. doi:10.1073/pnas.1112905109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Martinez AA, Harnisch F, Fitzgerald LA, Biffinger JC, Ringeisen BR, Schröder U (2011) Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81:74–80. doi:10.1016/j.bioelechem.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525. doi:10.1016/j.biortech.2009.02.065

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Venkata Subhash G, Venkata Mohan S (2012) Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresour Technol 109:46–56. doi:10.1016/j.biortech.2011.12.135

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232. doi:10.1038/nbt867

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496. doi:10.1016/j.elecom.2006.10.023

    Article  CAS  Google Scholar 

  • Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis. Nature 416:767–769

    Article  CAS  PubMed  Google Scholar 

  • Clauwaert P, van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open Air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569. doi:10.1021/es0709831

    Article  CAS  PubMed  Google Scholar 

  • Coppi MV (2005) The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. Microbiology 151:1239–1254. doi:10.1099/mic.0.27535-0

    Article  CAS  PubMed  Google Scholar 

  • Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474. doi:10.1128/jb.00925-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y-HR, Hixson KK, Aklujkar MA, Lipton MS, Smith RD, Lovley DR, Mester T (2008) Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. Biochim Biophys Acta Proteins Proteomics 1784:1935–1941. doi:10.1016/j.bbapap.2008.06.011

    Article  CAS  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482. doi:10.1016/j.biotechadv.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42:8101–8107. doi:10.1021/es801229j

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald LA, Petersen ER, Ray RI, Little BJ, Cooper CJ, Howard EC, Ringeisen BR, Biffinger JC (2012) Shewanella oneidensis MR-1 Msh pilin proteins are involved in extracellular electron transfer in microbial fuel cells. Process Biochem 47:170–174. doi:10.1016/j.procbio.2011.10.029

    Article  CAS  Google Scholar 

  • Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334. doi:10.1016/S0956-5663(02)00110-0

    Article  CAS  PubMed  Google Scholar 

  • Gill R, Patolsky F, Katz E, Willner I (2005) Electrochemical control of the photocurrent direction in intercalated DNA/CdS nanoparticle systems. Angew Chem Int Ed Engl 44:4554–4557. doi:10.1002/anie.200500830

    Article  CAS  PubMed  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Si I, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363. doi:10.1073/pnas.0604517103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelik LY, Voinova MV (2006) Mechanically mediated electron transfer in model metallo-enzyme interfaces. Biosens Bioelectron 22:405–408. doi:10.1016/j.bios.2006.06.032

    Article  CAS  PubMed  Google Scholar 

  • Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2:921–926. doi:10.1002/cssc.200900111

    Article  CAS  PubMed  Google Scholar 

  • Holzinger M, Le Goff A, Cosnier S (2012) Carbon nanotube/enzyme biofuel cells. Electrochim Acta 82:179–190. doi:10.1016/j.electacta.2011.12.135

    Article  CAS  Google Scholar 

  • Jiang D, Li B (2009) Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J 47:31–37. doi:10.1016/j.bej.2009.06.013

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011) Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol 29:32–37. doi:10.1016/j.nbt.2011.04.014

    Article  CAS  Google Scholar 

  • Kalathil S, Van Nguyen H, Shim JJ, Khan MM, Lee J, Cho MH (2013) Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J Nanosci Nanotechnol 13:7712–7716

    Article  CAS  PubMed  Google Scholar 

  • Kang CS, Eaktasang N, Kwon D-Y, Kim HS (2014) Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell. Bioresour Technol 165:27–30. doi:10.1016/j.biortech.2014.03.148

    Article  CAS  PubMed  Google Scholar 

  • Kang YL, Ibrahim S, Pichiah S (2015) Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour Technol 189:364–369. doi:10.1016/j.biortech.2015.04.044

    Article  CAS  PubMed  Google Scholar 

  • Kanwar J, Mahidhara G, Roy K, Kanwar R (2013) Bioceramic nanomaterials in medical applications. Bioengineered nanomaterials. CRC Press, Boca Raton, pp 163–176

    Book  Google Scholar 

  • Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE (2011) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol 102:388–394. doi:10.1016/j.biortech.2010.05.019

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    Article  CAS  PubMed  Google Scholar 

  • Kim B-C, Postier BL, DiDonato RJ, Chaudhuri SK, Nevin KP, Lovley DR (2008) Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry 73:70–75. doi:10.1016/j.bioelechem.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Hatzell MC, Hutchinson AJ, Logan BE (2011) Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy Environ Sci 4:4662–4667

    Article  CAS  Google Scholar 

  • Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4:e00553–12. doi:10.1128/mBio.00553-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leang C, Krushkal J, Ueki T, Puljic M, Sun J, Juarez K, Nunez C, Reguera G, DiDonato R, Postier B, Adkins R, Lovley D (2009) Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. BMC Genomics 10:331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Zhang L, Ding L, Ren H, Cui H (2011a) Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Bioresour Technol 26:4169–4176. doi:10.1016/j.bios.2011.04.018

    CAS  Google Scholar 

  • Li W-W, Sheng G-P, Liu X-W, Yu H-Q (2011b) Recent advances in the separators for microbial fuel cells. Bioresour Technol 102:244–252. doi:10.1016/j.biortech.2010.03.090

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ding L, Cui H, Zhang L, Xu K, Ren H (2012) Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour Technol 116:459–465. doi:10.1016/j.biortech.2012.03.115

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng S, Logan B (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2004) Peer reviewed: extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A–167A. doi:10.1021/es040468s

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2008) Microbial Fuel Cells. Wiley 1–11

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in Air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346. doi:10.1021/es062644y

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:1740–1526. doi:10.1038/nrmicro1442

    Article  CAS  Google Scholar 

  • Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409. doi:10.1146/annurev-micro-092611-150104

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru A-E, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP, Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru A-E, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100

    Article  CAS  PubMed  Google Scholar 

  • Madiraju KS, Lyew D, Kok R, Raghavan V (2012) Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell. Bioresour Technol 110:214–218. doi:10.1016/j.biortech.2012.01.065

    Article  CAS  PubMed  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim B-C, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    Article  PubMed  Google Scholar 

  • McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a Net energy producer–Can this be achieved? Environ Sci Technol 45:7100–7106. doi:10.1021/es2014264

    Article  CAS  PubMed  Google Scholar 

  • McKinlay JB, Zeikus JG (2004) Extracellular iron reduction is mediated in part by neutral Red and hydrogenase in Escherichia coli. Appl Environ Microbiol 70:3467–3474. doi:10.1128/aem.70.6.3467-3474.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641. doi:10.1128/aem.71.12.8634-8641.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta-Kolte MG, Bond DR (2012) Geothrix fermentans secretes Two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl Environ Microbiol 78:6987–6995. doi:10.1128/aem.01460-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686. doi:10.1016/j.watres.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  • Mink JE and Hussain MM (2012) Excellent endurance of MWCNT anode in micro-sized Microbial Fuel Cell. 12th IEEE Conference on Nanotechnology (IEEE-NANO), 2012 pp 1–4

  • Moehlenbrock MJ, Meredith MT, Minteer SD (2011) Bioelectrocatalytic oxidation of glucose in CNT impregnated hydrogels: advantages of synthetic enzymatic metabolon formation. ACS Catal 2:17–25. doi:10.1021/cs200482v

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68:2294–2299. doi:10.1128/aem.68.5.2294-2299.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL, Methé BA, DiDonato RJ Jr, Covalla SF, Franks AE, Liu A, Lovley DR (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4:e5628. doi:10.1371/journal.pone.0005628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Núñez C, Esteve-Núñez A, Giometti C, Tollaksen S, Khare T, Lin W, Lovley DR, Methé BA (2006) DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. J Bacteriol 188:2792–2800. doi:10.1128/jb.188.8.2792-2800.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543. doi:10.1016/j.biortech.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral Red as an electronophore. Appl Environ Microbiol 66:1292–1297. doi:10.1128/aem.66.4.1292-1297.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 100:5132–5139. doi:10.1016/j.biortech.2009.05.041

    Article  CAS  PubMed  Google Scholar 

  • Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134

    Article  CAS  PubMed  Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA 111:12883–12888. doi:10.1073/pnas.1410551111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8:1740–1526

    Article  CAS  Google Scholar 

  • Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry:electricity-driven and driving communities. ISME J 1:9–18

    Article  CAS  PubMed  Google Scholar 

  • Raghavulu SV, Babu PS, Goud RK, Subhash GV, Srikanth S, Mohan SV (2012) Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC Adv 2:677–688. doi:10.1039/C1RA00540E

    Article  CAS  Google Scholar 

  • Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786

    Article  CAS  PubMed  Google Scholar 

  • Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24:4376–4379. doi:10.1021/la703469y

    Article  CAS  PubMed  Google Scholar 

  • Richter LV, Sandler SJ, Weis RM (2012) Two isoforms of geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J Bacteriol 194:2551–2563. doi:10.1128/jb.06366-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634. doi:10.1021/es052254w

    Article  CAS  PubMed  Google Scholar 

  • Roh SH (2013) Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application. J Nanosci Nanotechnol 13:4158–4161

    Article  CAS  PubMed  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459. doi:10.1016/j.tibtech.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  • Salazar RB, Shovsky A, Schonherr H, Vancso GJ (2006) Dip-pen nanolithography on (bio)reactive monolayer and block-copolymer platforms: deposition of lines of single macromolecules. Small 2:1274–1282. doi:10.1002/smll.200600235

    Article  CAS  PubMed  Google Scholar 

  • Sekar N, Umasankar Y, Ramasamy RP (2014) Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Phys Chem Chem Phys 16:7862–7871. doi:10.1039/c4cp00494a

    Article  CAS  PubMed  Google Scholar 

  • Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577. doi:10.1038/nrmicro2166

    Article  CAS  PubMed  Google Scholar 

  • Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR (2010) Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep 2:289–294. doi:10.1111/j.1758-2229.2009.00118.x

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Wang A, Cheng S, Yates MD, Logan B (2014) Geobacter anodireducens sp. nov., a novel exoelectrogenic microbe in bioelectrochemical systems. Int J Syst Evol Microbiol 10:3485–3491. doi:10.1099/ijs.0.061598-0

    Article  CAS  Google Scholar 

  • ter Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53:5697–5703. doi:10.1016/j.electacta.2008.03.032

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thepsuparungsikul N, Ng TC, Lefebvre O, Ng HY (2014) Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Sci Technol 69:1900–1910. doi:10.2166/wst.2014.102

    Article  CAS  PubMed  Google Scholar 

  • Van Hooijdonk E, Bittencourt C, Snyders R, Colomer J-F (2013) Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 4:129–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vargas IT, Albert IU, Regan JM (2013) Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells. Biotechnol Bioeng 110:3059–3062. doi:10.1002/bit.24949

    Article  CAS  PubMed  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623. doi:10.1128/aem.01387-07

    Article  CAS  Google Scholar 

  • Wang H, Hollywood K, Jarvis RM, Lloyd JR, Goodacre R (2010) Phenotypic characterization of shewanella oneidensis MR-1 under aerobic and anaerobic growth conditions by using fourier transform infrared spectroscopy and high-performance liquid chromatography analyses. Appl Environ Microbiol 76:6266–6276. doi:10.1128/aem.00912-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Correa E, Dunn W, Winder C, Goodacre R, Lloyd J (2013) Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis. Metabolomics 9:642–656. doi:10.1007/s11306-012-0488-3

    Article  CAS  Google Scholar 

  • Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852. doi:10.1016/j.bios.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Cheng Y-Y, Li B-B, Li W-W, Li D-B, Yu H-Q (2013) Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Bioresour Technol 136:711–714. doi:10.1016/j.biortech.2013.02.072

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881. doi:10.1126/science.1080664

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42:4146–4151

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25:105–111. doi:10.1016/j.bios.2009.06.013

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111:1108–1115. doi:10.1111/j.1365-2672.2011.05129.x

    Article  CAS  PubMed  Google Scholar 

  • Yang TH, Coppi M, Lovley D, Sun J (2010) Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb Cell Factories 9:90

    Article  CAS  Google Scholar 

  • Yi H, Nevin KP, Kim B-C, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503. doi:10.1016/j.bios.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  • You S, Zhao Q, Zhang J, Jiang J, Wan C, Du M, Zhao S (2007) A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J Power Sources 173:172–177. doi:10.1016/j.jpowsour.2007.07.063

    Article  CAS  Google Scholar 

  • Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 3:1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Xu S, Minteer SD, Baum DA (2011) Investigation of a deoxyribozyme as a biofuel cell catalyst. J Am Chem Soc 133:15890–15893. doi:10.1021/ja206787h

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Nakanishi S, Watanabe K, Hashimoto K (2011) Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells. J Biosci Bioeng 112:63–66. doi:10.1016/j.jbiosc.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li X-F, Ren Y-P, Wang X-H, Jian C (2012) Electricity generation from taihu lake cyanobacteria by sediment microbial fuel cells. J Chem Technol Biotechnol 87:1567–1573. doi:10.1002/jctb.3794

    Article  CAS  Google Scholar 

  • Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435. doi:10.1016/j.jpowsour.2011.01.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the University Grants Commission, New Delhi under Dr. D. S. Kothari Postdoctoral Fellowship Scheme. We acknowledge Dr. Hannah Burrow for proofreading the manuscript and her valuable input during the course of revision.

Declaration of interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ramana Chintalapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahidhara, G., Chintalapati, V.R. Eco-physiological and interdisciplinary approaches for empowering biobatteries. Ann Microbiol 66, 543–557 (2016). https://doi.org/10.1007/s13213-015-1148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1148-4

Keywords

Navigation