Skip to main content
Log in

A comparative study of ammonia-oxidizing archaea and bacteria in acidic and alkaline purple soils

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Soil pH has been suggested as one of the most important factors affecting the ecological characteristics of soil ammonia-oxidizers (AO), which mediate the conversion of ammonia to nitrate via nitrite and contribute significantly to the leaching of nitrate to groundwater and the production of atmospheric nitrous oxide (N2O). However, the dynamics of the AO community in acidic purple soils, which are widely distributed in Southwest China, remain largely unknown. In this study, two typical purple soils with different pH values (acidic: ACI; alkaline: ALK) were collected and studied. The abundance of amoA (gene encoding ammonia monooxygenase) of ammonia-oxidizing bacteria (AOB) and archaea (AOA) and that of the cbbL gene (encoding ribulose-1,5-biphosphate carboxylase/oxygenase) were determined by real-time PCR, and the community structures of AOB and AOA were investigated by cloning and sequencing. The results revealed that abundances of AOB and AOA were significantly lower in the ACI purple soil sample than in the ALK sample, but a higher ratio of AOA to AOB was found in the ACI purple soil sample. No significant difference in the abundance of cbbL was found between the two soils, but the ratio of AOB and AOA amoA to cbbL genes in the ACI soil samples was higher than that in the ALK sample. Moreover, the ALK and ACI soils harbored contrasting community compositions of AO. AOB in the ALK were dominated by cluster 3a (87 %), while the percentage of cluster 3a decreased and clusters 9 and 10 accounted for almost 77 % of the AOB community in the ACI soil. Nitrososphaera and Nitrosotalea were the major AOA phylotypes in the ALK and ACI soils, respectively. In conclusion, our results revealed the potential relations among pH, AO, and total chemoautotrophic bacteria in soil and that pH might have an essential impact on the adaptation and selection of AO in purple soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andert J, Wessen E, Borjesson G, Hallin S (2011) Temporal changes in abundance and composition of ammonia-oxidizing bacterial and archaeal communities in a drained peat soil in relation to N2O emissions. J Soils Sediments 11:1399–1407

    Article  CAS  Google Scholar 

  • Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6:e16626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Zhang LM, Shen JP, Zheng YM, Di HJ, He JZ (2012) Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol Ecol 80:146–158

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang LM, Shen JP, Wei WX, He JZ (2011) Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biol Fert Soils 47:323–331

    Article  CAS  Google Scholar 

  • De la Torre JR, Walk CB, Ingalls AE, Konneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    Article  PubMed  Google Scholar 

  • Deboer W, Gunnewiek P, Veenhuis M, Bock E, Laanbroek HJ (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl Environ Microbiol 57:3600–3604

    CAS  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci USA 108:21206–21211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and Distribution of N-cycling microbial communities in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  PubMed  Google Scholar 

  • He RY (2003) Purple soil in China (2). China Science Press, Beijing China

    Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  PubMed  Google Scholar 

  • He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    Article  CAS  Google Scholar 

  • Hu HW, Zhang LM, Dai Y, Di HJ, He JZ (2013) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediments 13:1439–1449

    Article  Google Scholar 

  • Hu BL, Liu S, Wang W, Shen LD, Lou LP, Liu WP, Tian GM, Xu XY, Zheng P (2014) pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS Microbiol Ecol 90:290–299

    Article  CAS  Google Scholar 

  • Isobe K, Koba K, Suwa Y, Ikutani J, Fang YT, Yoh M, Mo JM, Otsuka S, Senoo K (2012) High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition. FEMS Microbiol Ecol 80:193–203

    Article  CAS  PubMed  Google Scholar 

  • Jiang YJ, Jin C, Sun B (2014) Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil. Environ Microbiol 16:3083–3094

    Article  CAS  PubMed  Google Scholar 

  • Kim JG, Jung MY, Park SJ, Rijpstra WIC, Damste JSS, Madsen EL, Min D, Kim JS, Kim GJ, Rhee SK (2012) Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ Microbiol 14:1528–1543

    Article  CAS  PubMed  Google Scholar 

  • Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  CAS  PubMed  Google Scholar 

  • Kurola J, Salkinoja-Salonen M, Aarnio T, Hultman J, Romantschuk M (2005) Activity, diversity and population size of ammoniaoxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol Lett 250:33–38

    Article  CAS  PubMed  Google Scholar 

  • Kusian B, Bowien B (1997) Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 21:135–155

    Article  CAS  PubMed  Google Scholar 

  • Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108:15892–15897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu RK (1999) Methods of Agrochemical Soil Analysis. China Agricultural Science Press, Beijing China

    Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Rattel T, Flechl S, Grongroft A, Rlchter A, Overmann J, Relnhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialization and differentiation. Trends Microbiol 20:523–531

    Article  CAS  PubMed  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt I (2009) Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol 59:130–138

  • Selesi D, Pattis I, Schmid M, Kandeler E, Hartmann A (2007) Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J Microbiol Method 69:497–503

    Article  CAS  Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Shen JP, Zhang LM, He JZ (2014) constrasting response of nitrification capacity in three agricultural soils to N addition during short-term incubation. J Soils Sediments 14:1861–1868

    Article  CAS  Google Scholar 

  • Stopnisek N, Gubry-Rangin C, Hofferle S, Nicol GW, Mandic-Mulec I, Peosser JI (2010) Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol 76:7626–7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tolli J, King GM (2005) Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl Environ Microbiol 71:8411–8418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108:8420–8425

  • Videmsek U, Hagn A, Suhadolc M, Radl V, Knicker H, Schloter M, Vodnik D (2009) Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microb Ecol 58:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wessen E, Nyberg K, Jansson JK, Hallin S (2011) Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl Soil Ecol 45:193–200

    Article  Google Scholar 

  • Wu XH, Ge TD, Yuan HZ, Zhou P, Chen XB, Chen S, Brookes P, Wu JS (2014) Evaluation of optimal extraction method for measuring D-ribulose-1,5-bisphosphate carboxylase/oxgenase (RubisCO) in agricultural soils and its association with soil microbial CO2 assimilation. Pedobiologia 57:277–284

    Article  Google Scholar 

  • Xiao KQ, Bao P, Bao QL, Jia Y, Huang FY, Su JQ, Zhu YG (2014) Quantative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. FEMS Microbiol Ecol 87:89–101

    Article  CAS  PubMed  Google Scholar 

  • Yao HY, Gao YM, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao HY, Campbell CD, Chapman SJ, Freitag TE, Nicol GW, Singh BK (2013) Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environ Microbiol 15:2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Ying JY, Zhang LM, He JZ (2010) Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environ Microbiol Rep 2:304–312

    Article  CAS  PubMed  Google Scholar 

  • Yuan HZ, Ge TD, Zou SY, Wu XH, Liu SL, Zhou P, Chen XJ, Brookes P, Wu JS (2013) Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxgenase (RubisCO) large subunit gene abundance in soils. Biol Fert Soils 49:609–616

    Article  CAS  Google Scholar 

  • Zhalnina K, de Quadros PD, Camargo FAO, Triplett EW (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZF, Shi XJ, Zheng Y, Qin ZX, Xie DT, Li ZL, Guo T (2014) Abundance and community structure of ammonia-oxidizing bacteria and archaea in purple soil under long-term fertilization. Eur J Soil Biol 60:24–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41371477), China Postdoctoral Science Foundation (2013 M531928), and the Fundamental Research Funds for the Central Universities (XDJK2014B047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, ZF., Wang, MX., Liu, WL. et al. A comparative study of ammonia-oxidizing archaea and bacteria in acidic and alkaline purple soils. Ann Microbiol 66, 615–623 (2016). https://doi.org/10.1007/s13213-015-1143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1143-9

Keywords

Navigation