Skip to main content

Advertisement

Log in

ITS2 RNA secondary structure analysis reveals close affinity between endophytic and pathogenic fungi: A case study in Fusarium species

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Endophytes are microbes which colonize inner plant tissues without causing any disease symptoms. Many of the fungi isolated as endophytes show a close morphological resemblance to plant pathogenic fungi. It is commonly believed that pathogenic/non-pathogenic fungi become endophytic/pathogenic due to virulence loss/acquisition, respectively, but the molecular basis of such transformations and the shared characteristics are still to be elucidated. We have investigated the relationships between endophytes and pathogens based on internal transcribed spacer 2 (ITS2) sequence and secondary structure analyses in Fusarium as a model organism. We found that the ITS2 sequence-based phylogeny indicated close genetic proximity among endophytic and pathogenic strains of Fusarium species, suggesting that strains of this fungus can easily change between an endophytic and a necrotrophic lifestyle. We also observed a considerable discrepancy in the positions of bases in the ITS2 nucleotide sequences. RNA secondary structures of both endophytic and pathogenic forms of Fusarium were generated to distinguish between conserved and variable regions within the ITS2 sequence. The generated structures showed some structural similarities between the endophytic and pathogenic forms, with coincident variations in their respective junctions, hairpin loops, terminal loops and internal loops. Such findings suggest that Fusarium lifestyles are not stable but rather are dynamic and likely influenced by the genetic makeup of the fungal species, host factors and changing environment. Our research highlights the importance of the ITS2 sequence and its secondary structure as possible molecular markers to establish relationships and variations between the endophyte and pathogen lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson IC, Parkin PI (2007) Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. J Microbiol Methods 68:248–253

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Meffa LC, Kyollo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon CW, Hinton DM (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202

    Article  Google Scholar 

  • Barik BP, Tayung K (2012) Molecular differentiation of Fusarium spp. with varied lifestyles based on TEF 1 alpha gene sequence analysis. Interdiscip Sci 4(3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Chandra NS, Udaya Shankar AC, Niranjana SR, Reddy MS, Prakash HS, Mortensen CN (2008) Control of Fusarium verticilliodes causing ear rot of maize by Pseudomonas fluorescens. Pest Manag Sci 65:769–775

    Article  Google Scholar 

  • Clarke JD (2009) Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc 3. doi: 10.1101/pdb.prot5177

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35:3322–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195

    Article  CAS  PubMed  Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiol 150:4023–4031

    Article  CAS  Google Scholar 

  • Fernandes EG, Pereira OL, Silva CCD, Bento CBP, Queiroz MVD (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res. doi: 10.1016/j.micres.2015.05.010

  • Fisher P, Petrini LE, Sutton RC, Petrini O (1995) A study of fungal endophytes in leaves, stems and root of Gynoxis oleifolia Muchler (Compositae) from Ecuador. Nova Hedwigia 60:589–594

  • Fracchia S, Garcia-Romera I, Godeas A, Ocampo JA (2000) Effect of the saprophytic fungus, Fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials. Plant Soil 223:175–184

    Article  CAS  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, Mckenzie EHC, Photita W, Lumyong S (2007) Biodiversity of saprobic fungi. Biodivers Conserv 16:17–35

    Article  Google Scholar 

  • Isaac S (1992) Fungal–plant interactions. Chapman and Hall, New York

    Google Scholar 

  • Keller A, Schleicher T, Forster F, Ruderisch B, Dandekar T, Muller T, Wolf M (2008) ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales). BMC Evol Biol 8:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller A, Schleicher T, Schultz J, Müller T, Dandekar T (2009) 5.8S-28S r RNA interaction and HMM-based ITS2 annotation. Gene 430:50–57

    Article  CAS  PubMed  Google Scholar 

  • Krüger D, Gargas A (2008) Secondary structure of ITS2 ribosomal RNA provides taxonomic characters for systematic studies—a case in Lycoperdaceae (Basidiomycota). Mycol Res 112:316–330

    Article  PubMed  Google Scholar 

  • Miao M, Warrenb A, Songa W, Wangc S, Shanga H, Chena Z (2008) Analysis of the Internal Transcribed Spacer 2 (ITS2) region of Scuticociliates and related taxa (Ciliophora, Oligohymenophorea) to infer their evolution and phylogeny. Protist 159:519–533

    Article  CAS  PubMed  Google Scholar 

  • Mohanta J, Tayung K, Mohapatra UB (2008) Antimicrobial potentials of endophytic fungi inhabiting three ethno-medicinal plants of Similipal Biosphere Reserve, India. Internet J Microbiol 5:2

  • Müller CB, Kraus J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  Google Scholar 

  • Petrini O, Dreyfuss MM (1981) Endophytische Pilze in epiphyischen Araceae, Bromeliaceae and Orchidaceae. Sydowia 34:135–148

    Google Scholar 

  • Pinto PM, Resende MA, Koga-Ito CY, Ferreira JA, Tendler M (2004) rDNA- RFLP identification of Candida species in immunocompromised and seriously diseased patients. Can J Microbiol 7:514–520

    Article  Google Scholar 

  • Poczai P, Varga I, Hyvonen J (2015) Internal transcribed spacer (ITS) evolution in populations of the hyperparasitic European mistletoe pathogen fungus, Sphaeropsis visci (Botryosphaeriaceae): The utility of ITS2 secondary structures. Gene 558(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Rampersad SN (2014) ITS1, 5.8S and ITS2 secondary structure modeling for intra-specific differentiation among species of the Colletotrichum gloeosporioides sensu lato species complex. Spriger Plus 3 (1):10

  • Ratnaweera PB, De Silva ED, Williams DE, Andersen RJ (2015) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Alternat Med 15(1):220

    Article  Google Scholar 

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Samaga PV, Rai VR, Rai KML (2014) Production of an antimicrobial cytochalasan by an endophytic Chaetomium globosum HYML55 from Hypericum mysorense and its RNA secondary structure analysis. Chem Ecol 30:566–578

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schultz J, Wolf M (2009) ITS2 sequence-structure analysis in phylogenetics: A how to manual for molecular systematics. Mol Phylogen Evol 52:520–523

    Article  CAS  Google Scholar 

  • Taechowisan T, Lu C, Shen Y, Lumyong S (2005) 4-Arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Ann Microbiol 55(1):63–66

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scotta B (2006) Reactive oxygen species play a role in regulating a fungus perennial ryegrass mutualistic interacttion. Plant Cell 18:1052–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tayung K, Barik BP, Jha DK, Deka DC (2011) Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2(3):203–213

    Google Scholar 

  • Tayung K, Sarkar M, Baruah P (2012) Endophytic fungi occurring in Ipomoea carnea tissues and their antimicrobial potentials. Braz Arch Biol Technol 55(5):653–660

    Article  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The corresponding author gratefully acknowledges University Grants Commission (UGC), Govt. of India, for financial support in the form of an UGC Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumananda Tayung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhi, S., Panda, M.K., Das, D. et al. ITS2 RNA secondary structure analysis reveals close affinity between endophytic and pathogenic fungi: A case study in Fusarium species. Ann Microbiol 66, 625–633 (2016). https://doi.org/10.1007/s13213-015-1142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1142-x

Keywords

Navigation