Skip to main content
Log in

Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The Ferric uptake regulator (Fur) protein is a global iron regulator found in most prokaryotes. Although the Fur protein is involved in a variety of metabolic pathways, it is specifically known for the regulation of several iron responsive genes. It binds to the highly conserved sequences located in the upstream promoter region known as iron boxes, using ferrous ion as a co-repressor. Apart from that, the Fur protein is also directly/indirectly involved in a variety of other crucial physiological pathways. Hence, understanding the mechanism of action and the mechanistic pathways of iron regulation by Fur is necessary and important. The basic understanding of the functioning and properties of Fur protein along with its role, interaction and regulation at various levels in cyanobacteria has been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abed RMM, Garcia-Pichel F (2001) Long-term compositional changes after transplant in a microbial mat cyanobacterial community revealed using a polyphasic approach. Environ Microbiol 3:53–62

    Article  CAS  PubMed  Google Scholar 

  • Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59:1848–1858

    Article  CAS  PubMed  Google Scholar 

  • Althaus EW, Outten CE, Olson KE, Cao H, O’Halloran TV (1999) The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38:6559–6569

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19:29–32

    Article  CAS  Google Scholar 

  • Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477

    Article  CAS  PubMed  Google Scholar 

  • Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baichoo N, Wang T, Ye R, Helmann JD (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, pp 28–36

    Google Scholar 

  • Barnett JP, Millard A, Ksibe AZ, Scanlan DJ, Schmid R, Blindauer CA (2012) Mining genomes of marine cyanobacteria for elements of zinc homeostasis. Front Microbiol 3:1–21

    Article  Google Scholar 

  • Barton HA, Johnson Z, Cox CD, Vasil AI, Vasil ML (1996) Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol 21:1001–1017

    Article  CAS  PubMed  Google Scholar 

  • Bereswill S, Greiner S, van Vliet AH, Waidner B, Fassbinder F, Schiltz E, Kusters JG, Kist M (2000) Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori. J Bacteriol 182(21):5948–5953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bes MT, Hernandez JA, Peleato M, Fillat MF (2001) Cloning, overexpression and interaction of recombinant Fur from the cyanobacterium Anabaena PCC 7119 with isiB and its own promoter. FEMS Microbiol Lett 194:187–192

    Article  CAS  PubMed  Google Scholar 

  • Boehm M, Yu J, Krynicka V, Barker M, Tichy M, Komenda J (2012) Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in Photosystem II repair. Plant Cell 24:3669–3683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Botello-Morte L, Gonzalez A, Bes MT, Peleato ML, Fillat MF (2013) Functional genomics of metalloregulators in cyanobacteria. In: Chauvat F, Cassier-Chauvat C (eds) Genomics of Cyanobacteria. Academic, New York, pp 107–156

    Chapter  Google Scholar 

  • Botello-Morte L, Bes TM, Heras B, Fernandez-Otal A, Peleato ML, Fillat MF (2014) Unraveling the redox properties of the global regulator FurA from Anabaena sp. PCC 7120: Disulfide reductase activity based on its CXXC Motifs. Antiox Redox Signal 20:1396–1406

    Article  CAS  Google Scholar 

  • Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  CAS  PubMed  Google Scholar 

  • Brahamsha B, Haselkorn R (1992) Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes. J Bacteriol 174:7273–7282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braun V, Hantke K (1991) Genetics of bacterial iron transport. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, Boca Raton, pp 107–138

    Google Scholar 

  • Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65

    Article  CAS  PubMed  Google Scholar 

  • Bsat N, Helmann JD (1999) Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol 181:4299–4307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Bullen JJ, Rogers HJ, Griffiths E (1978) Role of iron in bacterial infections. In: Arber W, Henle W, Hofschneider PH, Humphrey JH, Klein J, Koldovský P, Koprowski H, Maaløe O, Melchers F, Rott R, Schweiger HG, Syruek, L, Vogt PK (eds) Curr Top Microbiol Immunol. Springer-Verlag Berlin Heidelberg, Vol 80, pp 1–35

  • Calderwood S, Mekalanos JJ (1988) Conformation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170:1015–1017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q, Crosa JH (1996) Antisense RNA, Fur, iron, and the regulation of iron transport genes in Vibrio anguillarum. J Biol Chem 271:18885–18891

    Article  CAS  PubMed  Google Scholar 

  • Christoffersen CA, Brickman TJ, Hook-Barnard I, McIntosh MA (2001) Regulatory architecture of the iron regulated fepD-ybdA bidirectional promoter region in Escherichia coli. J Bacteriol 183:2059–2070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cornelis P, Wie Q, Andrews SC, Vinckx T (2011) Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3:540–549

    Article  PubMed  CAS  Google Scholar 

  • Cox CD (1980) Iron uptake with ferric pyochelin and ferric citrate by Pseudomonas aeruginosa. J Bacteriol 142:581–587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1982) Pyochelin: novel structure of an iron chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci 78:4256–4260

    Article  Google Scholar 

  • Coy M (1995) The interaction of the ferric uptake regulation protein with DNA. Biochem Biophys Res Commu 212:784–792

    Article  CAS  Google Scholar 

  • Coy M, Neilands JB (1991) Structural dynamics and functional domains of the Fur protein. Biochemistry 30:8201–8210

    Article  CAS  PubMed  Google Scholar 

  • Davis BM, Quinones M, Pratt J, Ding Y, Waldor MK (2005) Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 187:4005–4014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira MJ (2004) Microcystin- producing blooms- a serious global public health issue. Exotoxicol Environ Saf 59:151–163

    Article  CAS  Google Scholar 

  • de Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (Fur) repressor. J Bacteriol 169:2624–2630

    PubMed Central  PubMed  Google Scholar 

  • Delany I, Spohn G, Rappuoli R, Scarlato V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42:1297–1309

    Article  CAS  PubMed  Google Scholar 

  • Delany I, Spohn G, Pacheco A-B F, Ieva R, Alaimo C, Rappuoli R, Scarlato V (2002) Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site. Mol Microbiol 46(4):1107–1122

    Article  CAS  PubMed  Google Scholar 

  • Delany I, Rappuoli R, Scarlato V (2004) Fur functions as an activator and as a repressor of putative virulence gene in Neisseria meningitidis. Mol Microbiol 54:1081–1090

    Article  CAS  Google Scholar 

  • Deore SR, Bansal GK (2013) A study on health hazards caused by microcystins to the animal life. Int J Chem Sci Appl 4:24–28

    Article  CAS  Google Scholar 

  • Dubrac S, Touati D (2000) Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol 182:3802–3808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW (2005) Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium. J Bacteriol 187:4865–4874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duhring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci 103:7054–7058

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ernst JF, Bennett RL, Rothfield LI (1978) Constitutive expression of the iron enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J Bacteriol 135:928–934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ernst FD, Homuth G, Stoof J, Mader U, Waidner B, Kuipers EJ, Kist M, Kusters JG, Bereswill S, van Vliet AH (2005) Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J Bacteriol 187(11):3687–3692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Escolar L, de Lorenzo V, Pearez-Martoan J (1997) Metalloregulation in vitro of the aerobactin promoter of Escherichia coli by the Fur (ferric uptake regulation) protein. Mol Microbiol 26:799–808

    Article  CAS  PubMed  Google Scholar 

  • Escolar L, Perez-Martın J, de Lorenzo V (1998) Binding of the Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 283:537–547

    Article  CAS  PubMed  Google Scholar 

  • Ferrao-Filho AS, Kozlowsky-Suzuki B (2011) Cyanotoxin: bioaccumulation and effects on aquatic animals. Mar Drug 9:2729–2772

    Article  CAS  Google Scholar 

  • Ferreira F, Straus NA (1994) Iron deprivation in cyanobacteria. J Appl Phycol 6:199–210

    Article  CAS  Google Scholar 

  • Ferris JP (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1:145–149

    Article  CAS  Google Scholar 

  • Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52

    Article  CAS  PubMed  Google Scholar 

  • Florencio FJ, Perez-Perez ME, Lopez-Maury L, Mata-Cabana A, Lindahl M (2006) The diversity and complexity of the cyanobacterial thioredoxin systems. Photosynth Res 89:157–171

    Article  CAS  PubMed  Google Scholar 

  • Fuangthong M, Helmann JD (2003) Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacteriol 185:6348–6357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaballa A, Antelmann H, Aguilar C, Khakh SK, Song KB, Smaldone GT, Helmann JD (2008) The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A 105:11927–11932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao H, Zhou D, Li Y, Guo Z, Han Y, Song Y, Zhai J, Du Z, Wang X, Lu J, Yang R (2008) The iron-responsive Fur regulon in Yersinia pestis. J Bacteriol 190:3063–3075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghassemian M, Straus NA (1996) Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. strain PCC 7942. Microbiology 142:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Bes MT, Peleato ML, Fillat MF (2011) Unraveling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. J Proteomics 74:660–671

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Bes MT, Valladares A, Peleato ML, Fillat MF (2012) FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in Anabaena sp. PCC 7120. Environ Microbiol 14:3175–3187

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Angarica AE, Sancho J, Fillat MF (2014) The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes. Nucleic Acids Res 42:4833–4846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gottesman S (2002) Stealth regulation: biological circuits with small RNA switches. Genes Dev 16:2829–2842

    Article  CAS  PubMed  Google Scholar 

  • Griggs DW, Konisky J (1989) Mechanism for iron-regulated transcription of the Escherichia coli cir gene: metal-dependent binding of Fur protein to the promoters. J Bacteriol 171:1048–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griggs DG, Tharp BB, Konisky J (1987) Cloning and promoter identification of the iron-regulated cir gene of Escherichia coli. J Bacteriol 169:5343–5352

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hahn JS, Oh SY, Roe JH (2000) Regulation of the furA and catC Operon, encoding a Ferric Uptake Regulator homologue and Catalase-Peroxidase, respectively, in Streptomyces coelicolor A3. J Bacteriol 182:3767–3774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall HK, Foster JW (1996) The role of Fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178:5683–5691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamza I, Chauhan VS, Hassett R, O’ Brian MR (1998) The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 273:21669–22167

    Article  CAS  PubMed  Google Scholar 

  • Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Heidrich C, Hantke K, Bierbaum G, Sahl HG (1996) Identification and analysis of a gene encoding a Fur-like protein of Staphylococcus epidermidis. FEMS Microbiol Lett 14:253–259

    Article  Google Scholar 

  • Hennecke H (1990) Regulation of bacterial gene expression by metal- protein complexes. Mol Microbiol 4:1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Heras B, Kurz M, Shouldice SR, Martin JL (2007) The name’s bond…disulfide bond. Curr Opin Struct Biol 17:691–698

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Bes MT, Fillat MF, Neira JL, Peleato ML (2002) Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state. Biochem J 366:315–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez JA, Lopez-Gomollon S, Bes MT, Fillat MF, Peleato ML (2004a) Three Fur homologues from Anabaena sp. PCC 7120: exploring reciprocal protein-promoter recognition. FEMS Microbiol Lett 236:275–282

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Peleato ML, Fillat MF, Bes MT (2004b) Heme binds to and inhibits the DNA-binding activity of the global regulator FurA from Anabaena sp. PCC 7120. FEBS Lett 577:35–41

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Meier J, Barrera FN, de los Panos OR, Hurtado-Gomez E, Bes MT, Fillat MF, Peleato ML, Cavasotto CN, Neira JL (2005) The conformational stability and thermodyanamics of FurA (Ferric Uptake Regulator) from Anabaena sp. PCC 7119. Biophys J 89:4188–4200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez JA, Muro-Pastor AM, Flores E, Bes MT, Peleato ML, Fillat MF (2006a) Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 355:325–334

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Lopez-Gomollon S, Muro-Pastor A, Valladares A, Bes MT, Peleato ML, Fillat MF (2006b) Interaction of FurA from Anabaena sp. PCC 7120 with DNA: A reducing environment and the presence of Mn2+ are positive effectors in the binding to isiB and furA promoters. BioMethods 19:259–268

    Article  CAS  Google Scholar 

  • Hernandez JA, Pellicer S, Huang L, Peleato ML, Fillat MF (2007) FurA modulates gene expression of alr3808, a DpsA homologue in Nostoc (Anabaena) sp. PCC 7120. FEBS Lett 581:1351–1356

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Alonso I, Pellicer S, Luisa Peleato M, Cases R, Strasser RJ, Barja F, Fillat MF (2010) Mutants of Anabaena sp. PCC 7120 lacking alr1690 and α-furA antisense RNA show a pleiotropic phenotype and altered photosynthetic machinery. J Plant Physiol 167:430–437

    Article  CAS  PubMed  Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holm L, Syer C, Ruterjans H, Schnarr M, Fogh R, Boelens R, Kaptein R (1994) LexA repressor and iron uptake regulator from Escherichia coli: new members of the CAP-like DNA binding domain superfamily. Protein Eng 7:14449–14453

    Google Scholar 

  • Horsburgh MJ, Ingham E, Foster SJ (2001) In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183:468–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt MD, Pettis GS, McIntosh MA (1994) Promoter and operator determinants for Fur-mediated iron regulation in the bidirectional fepA-fes control region of the Escherichia coli enterobactin gene system. J Bacteriol 176:3944–3955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Igarashi J, Kitanishi K, Shimizu T (2011) Emerging roles of heme as a signal and a gas-sensing site: heme sensing and gas-sensing proteins. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 15. World Scientific Publishing Co, Singapore, pp 399–461

    Google Scholar 

  • Irieda H, Morita T, Maki K, Homma M, Aiba H, Sudo Y (2012) Photo-induced regulation of the chromatic adaptive gene expression by Anabaena sensory rhodopsin. J Biol Chem 287:32485–32493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isabella V, Wright LF, Barth K, Spence JM, Grogan S, Genco CA, Clark VL (2008) cis- and trans-acting elements involved in regulation of norB (norZ), the gene encoding nitric oxide reductase in Neisseria gonorrhoeae. Microbiology 154:226–239

    Article  CAS  PubMed  Google Scholar 

  • Jacquamet L, Traoré DAK, Ferrer J-L, Proux O, Testemale D, Hazemann J-L, Nazarenko E, Ghazouani AE, Caux Thang C, Duarte V, Latour J-M (2009) Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol Microbiol 73:20–31

    Article  CAS  PubMed  Google Scholar 

  • Jacques JF, Jang S, Prevost K, Desnoyers G, Desmarais M, Imlay J, Masse E (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 62:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Jeanjean R, Talla E, Latifi A, Havaux M, Janicki A, Zhang CC (2008) A large gene cluster encoding peptide synthetases and polyketide synthases is involved in production of siderophores and oxidative stress response in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol 10:2574–2585

    Article  CAS  PubMed  Google Scholar 

  • Kallifidas D, Pascoe B, Owen GA, Strain-Damerell CM, Hong HJ, Paget MSB (2009) The zinc-responsive regulator zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. J Bacteriol 192:608–611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  CAS  PubMed  Google Scholar 

  • Katayama M, Ohmori M (1997) Isolation and characterization of multiple adenylate cyclase genes from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179:3588–3593

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaushik MS, Srivastava M, Verma E, Mishra AK (2015) Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120. J Basic Microbiol 55:729–740

    Article  CAS  PubMed  Google Scholar 

  • Klebba PE, McIntosh MA, Neilands JB (1982) Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli. J Bacteriol 149:880–888

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kolb A, Busby S, Buc H, Garges S, Adhya S (1993) Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795

    Article  CAS  PubMed  Google Scholar 

  • Krynicka V, Tichý M, Krafl J, Yu J, Kanˇa R, Boehm M, Nixon PJ, Komenda J (2014) Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 94:609–624

    Article  CAS  PubMed  Google Scholar 

  • Kunert A, Vinnemeier J, Erdmann N, Hagemann M (2003) Repression by Fur is not the main mechanism controlling the iron-inducible isiAB operon in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 227:255–262

    Article  CAS  PubMed  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  CAS  PubMed  Google Scholar 

  • Lavrrar JL, Christoffersen CA, McIntosh MA (2003) Fur–DNA interactions at the bidirectional fepDGC-entS promoter region in Escherichia coli. J Mol Biol 322:983–995

    Article  CAS  Google Scholar 

  • Lee HJ, Bang SH, Lee KH, Park SJ (2007) Positive regulation of fur gene expression via direct interaction of fur in a pathogenic bacterium, Vibrio vulnificus. J Bacteriol 189:2629–2636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewin AC, Doughty PA, Flegg L, Moore GR, Spiro S (2002) The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148:2449–2456

    Article  CAS  PubMed  Google Scholar 

  • Li H, Singh H, McIntyre LM, Sherman LA (2004) Differential gene expression in response to hydrogen peroxide and the putative perR regulon of Synechocystis sp. strain PCC 6803. J Bacteriol 11:3331–3345

    Article  CAS  Google Scholar 

  • Lindsay JA, Foster SJ (2001) zur: a Zn2+-responsive regulatory element of Staphylococcus aureus. Microbiology 147:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Litwin CM, Calderwood SB (1994) Analysis of the complexity of gene regulation by fur in Vibrio cholerae. J Bacteriol 176(1):240–248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Litwin M, Boyko SA, Calderwood SB (1992) Cloning, sequencing and transcriptional regulation of the Vibrio cholerae fur gene. J Bacteriol 174:1897–1903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Gomollon S, Hernandez JA, Wolk CP, Peleato ML, Fillat MF (2006) Expression of FurA is modulated by NtcA and strongly enhanced in heterocysts of Anabaena sp. PCC 7120. Microbiology 153:42–50

    Article  CAS  Google Scholar 

  • Lopez-Gomollón S, Hernández JA, Pellicer S, Angarica VE, Peleato ML, Fillat MF (2007) Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in furA and ntcA regulons. J Mol Biol 374:267–281

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gomollon S, Sevilla S, Bes MT, Peleato ML, Fillat MF (2009) New insights into the role of Fur proteins: Fur (All2473) from Anabaena protects DNA and increases cell survival under oxidative stress. Biochem J 418:201–207

    Article  CAS  PubMed  Google Scholar 

  • Lukac M, Aegerter R (1993) Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon 31:293–305

    Article  CAS  PubMed  Google Scholar 

  • Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palu G, Riccardi G, Manganelli R (2007) Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 189:730–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin-Luna B, Hernandez JA, Bes MT, Fillat MF, Peleato ML (2005) Identification of a Ferric uptake regulator (Fur) from Microcystis aeruginosa PCC 7806. FEMS Microbiol Lett 254:63–70

    Article  CAS  Google Scholar 

  • Martin-Luna B, Sevilla E, Hernandez JA, Bes MT, Fillat MF, Peleato ML (2006) Fur from Microcystis aeruginosa binds in vitro promoter regions of the microcystin biosynthesis gene cluster. Phytochemistry 67:876–881

    Article  CAS  PubMed  Google Scholar 

  • Martin-Luna B, Sevilla E, Gonzalez A, Bes MT, Fillat MF, Peleato ML (2011) Expression of fur and its antisense fur from Microcystis aeruginosa PCC 7806 as response to light and oxidative stress. J Plant Physiol 168:2244–2250

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci 99:4620–4625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masse E, Majdalani N, Gottesman S (2003) Regulatory roles for small RNAs in bacteria. Curr Opin Microbiol 6:120–124

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masse E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10(2):140–145

    Article  CAS  PubMed  Google Scholar 

  • Mellin JR, Goswami S, Grogan S, Tjaden B, Genco CA (2007) A novel Fur- and iron-regulated small RNA, NrrF, is required for indirect Fur mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis. J Bacteriol 189:3686–3694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mellin JR, McClure R, Lopez D, Green O, Reinhard B, Genco C (2010) Role of Hfq in iron-dependent and –independent gene regulation in Neisseria meningitidis. Microbiology 156:2316–2326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mey AR, Craig SA, Payne SM (2005) Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 73:5706–5719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer JM (2000) Pyoverdins: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  CAS  PubMed  Google Scholar 

  • Michaud-Soret I, Adrait A, Jaquinod M, Forest E, Touati D, Latour JM (1997) Electrospray ionization mass spectroscopy analysis of theapo- and metal-substituted forms of the Fur protein. FEBS Lett 413:473–476

    Article  CAS  PubMed  Google Scholar 

  • Michel KP, Kruger F, Puhler A, Pistorius EK (1999) Molecular characterization of idiA and adjacent genes in the cyanobacteria Synechococcus sp. strains PCC 6301 and PCC 7942. Microbiology 145:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Miles S, Carpenter BM, Gancz H, Merrell DS (2010) Helicobacter pylori apo-Fur regulation appears unconserved across species. J Microbiol 48:378–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mills SA, Marletta MA (2005) Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44:13553–13559

    Article  CAS  PubMed  Google Scholar 

  • Nandal A, Huggins CC, Woodhall MR, McHugh J, Rodriguez-Quinones F, Quail MA (2010) Induction of the ferritin gene (ftnA) of Escherichia coli by Fe2+-Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol Microbiol 75:637–657

    Article  CAS  PubMed  Google Scholar 

  • Napolitano M, Rubio MÁ, Santamaría-Gómez J, Olmedo-Verd E, Robinson NJ, Luque I (2012) Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 194:2426–2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, pp 1–14

    Google Scholar 

  • Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H (2001) Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J 20:2835–2843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okamoto S, Kasahara M, Kamiya A, Nakahira Y, Ohmori M (2004) A phytochrome-like protein AphC triggers the cAMP signaling induced by far-red light in the cyanobacterium Anabaena sp. strain PCC7120. Photochem Photobiol 80:429–433

    Article  CAS  PubMed  Google Scholar 

  • Ortiz de Orue Lucana D, Schrempf H (2000) The DNA-binding characteristics of the Streptomyces reticuli regulator FurS depend on the redox state of its cysteine residues. Mol Gen Genet 264:341–353

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World 1:76–113

    Article  CAS  Google Scholar 

  • Paoli M, Marles-Wright J, Smith A (2002) Structure–function relationships in heme-proteins. DNA Cell Biol 21:271–280

    Article  CAS  PubMed  Google Scholar 

  • Patzer SI (2000) The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275:24321–24332

    Article  CAS  PubMed  Google Scholar 

  • Pellicer S, Gonzalez A, Peleato ML, Martinez JI, Fillat MF, Bes MT (2012) Site-directed mutagenesis and spectral studies suggest a putative role of FurA from Anabaena sp. PCC 7120 as a heme sensor protein. FEBS J 279:2231–2246

    Article  CAS  PubMed  Google Scholar 

  • Pohl E, Holmes RK, Hol WGJ (1999) Crystal structure of a cobalt-activated diphtheria toxin repressor–DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 292:653–667

    Article  CAS  PubMed  Google Scholar 

  • Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915

    Article  CAS  PubMed  Google Scholar 

  • Pressler U, Staudenmaier H, Zimmermann L, Braun V (1988) Genetics of the iron dicitrate transport system of Escherichia coli. J Bacteriol 170:2716–2724

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quan S, Schneider I, Pan J, Von Hacht A, Bardwell JC (2007) The CXXC motif is more than a redox rheostat. J Biol Chem 282:28823–28833

    Article  CAS  PubMed  Google Scholar 

  • Rueter JG, Petersen RR (1987) Micronutrient effects on cyanobacterial growth and physiology. N Z J Mar Freshw Res 21:435–445

    Article  Google Scholar 

  • Saito T, Williams RJP (1991) The binding of the ferric uptake regulation protein to a DNA fragment. Eur J Biochem 197:43–47

    Article  CAS  PubMed  Google Scholar 

  • Saito I, Wormald MR, Williams RJP (1991) Some structural features of the iron-uptake regulation protein. Eur J Biochem 197:29–38

    Article  CAS  PubMed  Google Scholar 

  • Salinas PC, Tolmasky ME, Crosa JH (1989) Regulation of the iron uptake system in Vibrio anguillarum: evidence for a cooperative effect between two transcriptional activators. Proc Natl Acad Sci U S A 86:3529–3533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sebastian S, Agarwal S, Murphy JR, Genco CA (2002) The gonococcal fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J Bacteriol 184:3965–3974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sein-Echaluce VC, González A, Napolitano M, Luque I, Barja F, Peleato ML, Fillat MF (2014) Zur (FurB) is a key factor in the control of the oxidative stress response in Anabaena sp. PCC 7120. Environ Microbiol. doi:10.1111/1462-2920.12628

    PubMed  Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    Article  CAS  PubMed  Google Scholar 

  • Sheikh MA, Taylor GL (2009) Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 72:1208–1220

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh A, Mishra AK, Singh SS, Shukla E (2008) Influence of iron and chelator on siderophore production in Frankia strains nodulating Hippopheae salicifolia D. Don. J Basic Microbiol 48:104–111

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh SS, Pandey PC, Mishra AK (2010) Attenuation of metal toxicity by Frankial siderophores. Toxicol Environ Chem 92:1339–1346

    Article  CAS  Google Scholar 

  • Smith A, Hooper NI, Shipulina N, Morgan WT (1996) Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation (Fur) gene of Escherichia coli. J Protein Chem 15:575–583

    Article  CAS  PubMed  Google Scholar 

  • Somerville G, Mikoryak CA, Reitzer L (1999) Physiological characterization of Pseudomonas aeruginosa during exotoxin A synthesis: glutamate, iron limitation, and aconitase activity. J Bacteriol 181:1072–1078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stojiljkovic I, Hantke K (1995) Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol Gen Genet 247:199–205

    Article  CAS  PubMed  Google Scholar 

  • Stojiljkovic I, Baumler AJ, Hantke K (1994) Fur regulon in Gram negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236:531–545

    Article  CAS  PubMed  Google Scholar 

  • Straus NA (1994) Iron deprivation: physiology and gene regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer academic publisher, Netherlands, pp 731–750

    Chapter  Google Scholar 

  • Teixido L, Carrasco B, Alonso JC, Barbe J, Campoy S (2011) Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLoS One 6, e19711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates J, Brandt CC, Tiedje JM, Zhou J (2002) Transcriptional and proteomic analysis of a Ferric Uptake Regulator (Fur) mutant of Shewanella oneidensis: possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68:881–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    Article  CAS  PubMed  Google Scholar 

  • Utkilen H, Gjolme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61(2):797–800

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang X, Feng S, Niu Z, Chen C (2009) Study on inactivation of iron bacteria isolated from real drinking water distribution systems by free chlorine and chloramines. Ann Microbiol 59(2):353–358

    Article  CAS  Google Scholar 

  • Wang Y, Mo X, Zhang L, Wang Q (2011) Four superoxide dismutase (isozymes) genes of Bacillus cereus. Ann Microbiol 61:355–360

    Article  CAS  Google Scholar 

  • Wee S, Neilands JB, Bittner ML, Hemming BC, Haymore BL, Seetharam R (1988) Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli K-12. Biol Metals 1:62–68

    Article  CAS  Google Scholar 

  • White A, Ding X, vander Spek JC, Murphy JR, Ringe D (1998) Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 394:502–506

    Article  CAS  PubMed  Google Scholar 

  • Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci 101:9792–9797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong A, Singh VK, Cabrera G, Jayaswal RK (2000) Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus. Microbiology 146:659–668

    Article  CAS  PubMed  Google Scholar 

  • Yingping F, Lemeille S, Talla E, Janicki A, Denis Y, Zhang C-C, Latifi A (2014) Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium Nostoc PCC 7120. Environ Microbiol Rep 6:468–475

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Genco CA (2012) Fur mediated global regulatory circuit in pathogenic Neisseria species. J Bacteriol 194:6372–6381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Guarente L (1995) Heam binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J 14:313–320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zheleznova EE, Crosa JH, Brennan RG (2000) Characterization of the DNA- and metal-binding properties of Vibrio anguillarum Fur reveals conservation of a structural Zn2+ ion. J Bacteriol 182:6264–6267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng M, Doan B, Schneider TD, Storz G (1999) OxyR and SoxRS regulation of Fur. J Bacteriol 181:4639–4643

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou D, Qin L, Han Y, Qiu J, Chen Z, Li B, Song Y, Wang J, Guo Z, Zhai J, Du Z, Wang X, Yang R (2006) Global analysis of iron assimilation and Fur regulation in Yersinia pestis. FEMS Microbiol Lett 258:9–17

    Article  CAS  PubMed  Google Scholar 

  • Zou P, Borovok I, Ortiz de Orué Lucana D, Müller D, Schrempf H (1999) The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology 145:549–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Council of Scientific and Industrial Research, New Delhi for providing financial support. The Head of the Department of Botany, Banaras Hindu University, Varanasi, India is gratefully acknowledged for providing the laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, M.S., Singh, P., Tiwari, B. et al. Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. Ann Microbiol 66, 61–75 (2016). https://doi.org/10.1007/s13213-015-1134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1134-x

Keywords

Navigation