Skip to main content
Log in

Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Pyruvate decarboxylase (PDC), a key enzyme in alcoholic fermentation in Saccharomyces cerevisiae, can degrade pyruvic acid to further convert acetaldehyde into ethanol. The main structural genes encoding PDC are PDC1 and PDC5. In this study, metabolic engineering principles were used to block the further metabolism of pyruvic acid; Saccharomyces cerevisiae Y2-1 with PDC1 disruption and Y2-15 with both PDC1 and PDC5 disruption were obtained using the LiAc/SS carrier DNA/PEG method. The specific PDC activity of mutant S. cerevisiae Y2-1 decreased by 31 % compared to that of the parent strain Y2, while specific PDC activity was barely detectable in mutant S. cerevisiae Y2-15. Moreover, the mutant Y2-1 with PDC1 disruption displayed no obvious effect on the rate of growth in the yeast nitrogen base with glucose (YNBG) medium, but the growth rate of S. cerevisiae Y2-15 was significantly lower than that of the parent strain Y2. Finally, through optimization of the fermentation medium, the accumulation of pyruvic acid by Y2-15 increased to 24.65 g/L over a period of 96 h, 16.86-fold higher than with the parental strain Y2 by shake flask cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:125–234

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Dawson D, Stearns T (2002) Methods in yeast genetics. Cold Spring Harbor Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Candy JM, Duggleby RG, Mattick JS (1991) Expression of active yeast pyruvate decarboxylase in Escherichia coli. J Gen Microbiol 137:2811–2815

    Article  CAS  PubMed  Google Scholar 

  • Causey TB, Shanmugam KT, Yomano LP, Ingram LO (2004) Engineering Escherichia coli efficient conversion of glucose to pyruvate. Proc Natl Acad Sci U S A 101:2235–2240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciriacy M, Breitenbach I (1979) Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol 139:152–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao NF, Deng XH, Wang DP, Li L (2011) Determination of pyruvate decarboxylase activity in Saccharomyces cerevisiae. China Brewing 3:128–130 (In Chinese)

    Google Scholar 

  • Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Piontek M, Strasser AWM, Hollenberg CP (1992) Heterologous protein production in yeast. Antonie Van Leeuwenhoek 62:79–93

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):38–41

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173(24):7963–7969

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621

    Article  CAS  PubMed  Google Scholar 

  • Ishida N, Saitoh S, Onishi K, Tokuhiro T, Nagamori E, Kitamoto K, Takahashi H (2006) The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Biosci Biotechnol Biochem 70(5):1148–1153

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hugenholtz J, Chen J, Lun SY (2002) Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxgen supply control strategy. Appl Microbiol Biotechnol 60:101–107

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yu L (2002) Yeast: A kind of model organism. Chem Life 20(2):61–65 (In Chinese)

    Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2002) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  Google Scholar 

  • Overkamp KM, Bakker BM, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2002) Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol 68:2814–2821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porro D, Brambilla L, Ranzi BM, Martegani E, Alberghina L (1995) Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol Prog 11:294–298

    Article  CAS  PubMed  Google Scholar 

  • Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  CAS  PubMed  Google Scholar 

  • Sambrook JE, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schaaff I, Green JBA, Gozalbo D, Hohmann S (1989) A deletion of the PDC1 gene for pyruvate decarboxylase of yeast causes a different phenotype than previously isolated point mutations. Curr Genet 15:75–81

    Article  CAS  PubMed  Google Scholar 

  • Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151:1146–1152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stockland AE, San Clemente CL (1969) Multiple forms of lactate dehydrogenase in Staphylococcus aureus. J Bacteriol 100:347–353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomar A, Eiteman MA, Altman E (2003) The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Appl Microbiol Biotechnol 62:76–82

    Article  CAS  PubMed  Google Scholar 

  • Van Maris AJA, Winkler AA, Porro D, van Dijken JP, Pronk JT (2004) Homofermentative lactate production cannot sustain annaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy dependent lactate export. Appl Environ Microbiol 70:2898–2905

    Article  PubMed Central  PubMed  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415(6874):871–880

    Article  CAS  PubMed  Google Scholar 

  • Zelić B, Gerharz T, Bott M, Vasić-Rački Đ, Wandrey C, Takors R (2003) Fed-batch process for pyruvate production by recombinant Escherichia coli YYC202 strain. Eng Life Sci 3:299–305

    Article  Google Scholar 

  • Zelić B, Gostović S, Vuorilehto K, Vasić-Rački Đ, Takors R (2004) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85:638–646

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor N.F. Gao for the valuable discussion. This work was supported by the National High-tech R&D Program of China (2012AA021302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Depei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, L., Hou, L. et al. Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid. Ann Microbiol 65, 2323–2331 (2015). https://doi.org/10.1007/s13213-015-1074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1074-5

Keywords

Navigation