Skip to main content

Advertisement

Log in

New approaches to modeling Staphylococcus aureus inactivation by ultrasound

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Ultrasound (US) is an effective technology to inactivate vegetative microorganisms in foods. In this study, the effect of amplitude levels (0.4, 7.5, and 37.5), duty cycles (0.3:0.7 s, 0.7:0.3 s, and 0.9: 0.1 s) and time (0, 2, 4, 6, 8, 10, 12, and 14 days) of US on inactivation of Staphylococcus aureus were investigated. In addition, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict inactivation of S. aureus. The GA-ANN and ANFIS were fed with three inputs of amplitude levels, duty cycles, and time. The inactivation rate of S. aureus was increased by increasing the amplitude levels, and the best inactivation was obtained at a 37.5 μm amplitude for which the S. aureus population was reduced to 2.59 CFU/mL. The high inactivation of S. aureus was achieved under a duty cycle of 0.7:0.3 s with reduction of the population to 1.49 CFU/mL. The developed GA-ANN, which included 17 hidden neurons, could predict the S. aureus population with a coefficient of determination of 0.986. The overall agreement between ANFIS predictions and experimental data was also very good (R 2 = 0.979). Sensitivity analysis results showed that the amplitude level was the most sensitive factor for prediction of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adekunte A, Valdramidis VP, Tiwari BK, Slone N, Cullen PJ, Donnell CPO, Scannell A (2010) Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperatures: a quantitative approach on microbial responses. Int J Food Microbiol 142:53–59

    Article  PubMed  CAS  Google Scholar 

  • Ananta E, Voigt D, Zenker M, Heinz V, Knorr D (2005) Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. J Appl Microbiol 95:271–278

    Article  Google Scholar 

  • Awad T, Moharram H, Shaltout O, Asker D, Youssef M (2012) Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res Int 48:410–427

    Article  CAS  Google Scholar 

  • Bahramparvar M, Salehi F, Razavi SMA (2014) Predicting total acceptance of ice cream using artificial neural network. J Food Process Preserv 38(3):1080–1088

    Article  Google Scholar 

  • Bermudez-Aguirre D, Corradini MG, Mawson R, Barbosa-Canovas GV (2009) Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov Food Sci Emerg 10:172–178

    Article  CAS  Google Scholar 

  • Chemat F, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  PubMed  CAS  Google Scholar 

  • Cheroutre-Vialette M, Lebert A (2002) Application of recurrent neural network to predict bacterial growth in dynamic conditions. Int J Food Microbiol 73:107–118

    Article  PubMed  CAS  Google Scholar 

  • Demirdoven A, Baysal T (2008) The use of ultrasound and combined technologies in food preservation. Food Rev Int 25:1–11

    Article  CAS  Google Scholar 

  • Esteve MJ, Frigola A (2007) Refrigerated fruit juices: quality and safety issues. Adv Food Nutr Res 52:103–139

    Article  PubMed  CAS  Google Scholar 

  • Fernandes FC, Rigden DJ, Franco OL (2012) Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application. Pept Sci 98(4):280–287

    Article  CAS  Google Scholar 

  • Joyce E, Al-Hashemi A, Mason TJ (2007) Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. J Appl Microbiol 110:862–870

    Article  Google Scholar 

  • Kiang WS, Bhat R, Rosma A, Cheng LH (2012) Effects of thermosonication on the fate of Escherichia coli O157:H7 and Salmonella Enteritidis in mango juice. Lett Appl Microbiol 56:251–257

    Article  CAS  Google Scholar 

  • Koda S, Miyamoto M, Toma M, Matsuoka T, Maebayashi M (2009) Inactivation of Escherichia coli and Streptococcus mutants by ultrasound at 500 kHz. Ultrason Sonochem 16:655–659

    Article  PubMed  CAS  Google Scholar 

  • Lou W, Nakai S (2000) Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Res Int 34:573–579

    Article  Google Scholar 

  • Mason TJ (2007) Sonochemistry and the environment – providing a “green” link between chemistry, physics and engineering. Ultrason Sonochem 14:476–483

    Article  PubMed  CAS  Google Scholar 

  • Oonmetta-aree J, Suzuki T, Gasaluck P, Eumkeb G (2006) Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. Food Sci Technol 39(10):1214–1220

  • Patil S, Bourke P, Kelly B, Frias JM, Cullen PJ (2009) The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innov Food Sci Emerg 10:486–490

    Article  CAS  Google Scholar 

  • Piyasena P, Mohareb E, McKeller RC (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 87:207–216

    Article  PubMed  CAS  Google Scholar 

  • Raso J, Pagan R, Condan S, Sala FJ (1998) Influence of temperature and pressure on the lethality of ultrasound. Appl Environ Microbiol 64(2):465–471

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rodgers SL, Ryser ET (2004) Reduction of microbial pathogens during apple cider production using sodium hypochlorite, copper ion, and sonication. J Food Prot 67:766–771

    Article  CAS  Google Scholar 

  • Rumelhart DE, Durbin R, Golden R, Chauvin Y (1994) Backpropagation: theory, architectures, and applications backpropagation: the basic theory. Lawrence Erlbaum Associates, New Jersey, pp 1–34

    Google Scholar 

  • Sango DM, Abela D, McElhatton A, Valdramidis VP (2014) Assisted ultrasound applications for the production of safe foods. J Appl Microbiol 116:1067–1083

    Article  PubMed  CAS  Google Scholar 

  • Soleimanzadeh B, Hemati L, Yolmeh M, Salehi F (2014) GA-ANN and ANFIS models and Salmonella enteritidis inactivation by ultrasound. J Food Saf. doi:10.1111/jfs.12174

    Article  Google Scholar 

  • Tsukamoto I, Yim B, Stavarache CE, Furuta M, Hashiba K, Maeda Y (2004) Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrason Sonochem 11:61–65

    Article  PubMed  CAS  Google Scholar 

  • Ugarte-Romero E, Feng H, Martin SE (2007) Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. J Food Sci 74(4):103–107

    Article  CAS  Google Scholar 

  • Yolmeh M, Habibi-Najafi MB, Salehi F (2014a) Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis. Microb Pathog 67–68:36–40

    Article  PubMed  Google Scholar 

  • Yolmeh M, Habibi-Najafi MB, Farhoosh R, Salehi F (2014b) Modeling of antibacterial activity of annatto dye on Escherichia coli in mayonnaise. Food Biosci 8:8–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Yolmeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanzadeh, B., Amoozandeh, A., Shoferpour, M. et al. New approaches to modeling Staphylococcus aureus inactivation by ultrasound. Ann Microbiol 68, 313–319 (2018). https://doi.org/10.1007/s13213-015-1067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1067-4

Keywords

Navigation