Skip to main content
Log in

Metabolic capacities and toxigenic potential as key drivers of Bacillus cereus ubiquity and adaptation

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus cereus is ubiquitous and is commonly found in a wide range of environments, including food. In this study, we analyzed 114 foodborne B. cereus strains isolated mainly from starchy and dairy products in order to investigate their phenotypic diversity (API system), antimicrobial resistance and toxigenic profiles (hblA, nheA, hlyII, cereolysin O, cytK2, cytK1 and EM1 genes). All isolates were confirmed as B. cereus using their 16–23S ribosomal DNA intergenic transcribed spacer (ITS) signature, and were shown to be Gram-positive, catalase and caseinase positive, hemolytic (97 %), and positive for lecithin hydrolysis and motility (97 and 87 %, respectively). PCR detection of B. cereus-specific toxin genes revealed occurrence rates of 100 % for cereolysin O, 98 % for nheA, 74 % for cytk2, 52 % for hblA, 28 % for hlyII, and the absence of cytK1. Only two strains (2 %), isolated from intestine of boar and pheasant, carried the emetic toxin genetic determinants (ces). The antimicrobial susceptibility of isolates was tested towards 15 different antimicrobial agents. We detected susceptibility of all strains to most antibiotics, intermediate resistance to clindamycin, and resistance to β-lactam antibiotics with 83 % of the resistant isolates producing β-lactamase enzyme. This large phenotypic diversity, combined with the toxigenic traits and antibiotic resistance, emphasize the high potential risk of food poisoning of B. cereus isolates. Additionally, a clear correlation between the metabolic features and the origin of isolation was shown. Most starchy isolates were able to hydrolyze starch while dairy strains were not able to produce amylases. Overall, our results reveal that metabolic flexibility and toxigenic potential represent the main drivers for B. cereus ubiquity and adaptation in a given ecological niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abriouel H, Ben ON, Lucas LR, Martinez CM, Ortega E, Galvez A (2007) Differentiation and characterization by molecular techniques of Bacillus cereus group isolates from poto poto and degue, two traditional cereal-based fermented foods of Burkina Faso and Republic of Congo. J Food Protect 70:1165–1173

    CAS  Google Scholar 

  • AFNOR (1996) NF ISO 7932. Microbiologie. Directives générales pour le dénombrement de Bacillus cereus Méthode par comptage des colonies à 30°C In: Analyse Microbiologique. Tome 1. Méthodes Horizontales. Contrôle de la Qualité des Produits Alimentaires. pp. 209–217. Paris La Défense, Association Française de Normalisation

  • Agaisse H, Gominet M, Okstad OA, Kolstø AB, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Al-Khatib M, Khyami-Horani BE, Shehabi A (2007) Incidence and characterization of diarrheal enterotoxins of fecal Bacillus cereus isolates associated with diarrhea. Diagn Microbiol Infect Dis 59:383–387

    Article  CAS  PubMed  Google Scholar 

  • Altayar M, Sutherland AD (2006) Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J Appl Microbiol 100:7–14

    Article  CAS  PubMed  Google Scholar 

  • Andreeva ZI, Nesterenko VF, Fomkina MG, Ternovsky VI, Suzina NE, Bakulina AY, Solonin AS, Sineva EV (2007). The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. Biochim Biophys Acta 1768:253–263

  • Andrews JM, Wise R (2002) Susceptibility testing of Bacillus species. J Antimicrob Chemother 49:1040–1042

    Article  CAS  PubMed  Google Scholar 

  • Ankolekar C, Rahmati T, Labbé RG (2009) Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in US rice. Int J Food Microbiol 128:460–466

    Article  CAS  PubMed  Google Scholar 

  • Apetroaie C, Adersson MA, Spröer C, Tsitko I, Shaheen R, Jääskeläinen EL, Wijnands LM, Heikkilä R, Salkinoja-Salonen MS (2005) Cereulide-producing strains of Bacillus cereus show diversity. Arch Microbiol 184:141–151

  • Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A (2008) The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains. Appl Environ Microbiol 74:1276–1280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee M, Nair GB, Ramamurthy T (2011) Phenotypic and genetic characterization of Bacillus cereus isolated from the acute diarrhoeal patients. Indian J Med Res 133:88–95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartoszewicz M, Hansen BM, Swiecicka I (2008) The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol 25:588–596

    Article  CAS  PubMed  Google Scholar 

  • Carlin F, Brillard J, Broussole V, Clavel T, Duport C, Jobin M, Guinebretière M-H, Auger S, Sorokine A, Nguyen-The C (2009) Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res Int 43:1885–1894

  • Chaves JQ, Pires ES, Vivoni AM (2011) Genetic diversity, antimicrobial resistance and toxigenic profiles of Bacillus cereus isolated from food in Brazil over three decades. Int J Food Microbiol 147:12–16

    Article  CAS  PubMed  Google Scholar 

  • Cherif A, Borin S, Rizzi A, Ouzari H, Boudabous A, Daffonchio D (2003) Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16–23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Appl Environ Microbiol 69:33–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choma C, Guinebretière MH, Carlin F, Schmitt P, Velge P, Granum PE, Nguyen-The C (2000) Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J Appl Microbiol 88:617–625

  • Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH (2012) Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol 32:217–222

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (2010) Performance standards for antimicrobial susceptibility testing. Twentieth informational supplement. Document M100S20, CLSI. Wayne, PA

    Google Scholar 

  • Drew WL, Barry AL, O’Toole R, Sherris JC (1972) Reliability of the Kirby-Bauer disc diffusion method for detecting methicillin-resistant strains of Staphylococcus aureus. Appl Microbiol 24:240–247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338

  • Ehling-Schulz M, Fricker M, Scherer S (2004) Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 48:479–487

    Article  PubMed  Google Scholar 

  • Ehling-Schulz M, Svensson B, Guinbretiere MH, Lindbäck T, Andersson M, Schulz A, Fricker M, Christiansson A, Granum PE, Märtlbauer E, Nguyen-The C, Salkinoja-Salonen M, Scherer S (2005) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183–197

  • Ehling-schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S (2006) Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 6:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Ettoumi B, Raddadi N, Borin S, Daffonchio D, Boudabous A, Cherif A (2009) Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J Basic Microbiol 49:S13–S23

    Article  PubMed  Google Scholar 

  • Fagerlund A, Ween O, Lund T, Hardy SP, Granum PE (2004) Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150:2689–2697

    Article  CAS  PubMed  Google Scholar 

  • Fagerlund A, Lindbäck T, Granum PE (2010) Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol 10:304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finlay WJJ, Logan NA, Sutherland AD (2002) Bacillus cereus emetic toxin production in cooked rice. Food Microbiol 19:431–439

    Article  CAS  Google Scholar 

  • Godic Torkar K, Seme K (2009) Antimicrobial susceptibility, beta-lactamase and enterotoxin production in Bacillus cereus isolates from clinical and food samples. Folia Microbiol 54:233–238

    Article  CAS  Google Scholar 

  • Gohar M, Okstad OA, Gilois N, Sanchis V, Kolstø AB, Lereclus D (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784–791

    Article  CAS  PubMed  Google Scholar 

  • Granum PE (2007) Bacillus cereus. In: Doyle M, Beuchat L (eds) Food microbiology, fundamentals and frontiers, 3rd edn. ASM, Washington, pp 445–456

    Google Scholar 

  • Guinebretière MH, Broussolle V, Nguyen-The C (2002) Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol 40:3053–3056

    Article  PubMed Central  PubMed  Google Scholar 

  • Guinebretière MH, Fagerlund A, Granum PE, Nguyen-The C (2006) Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol Lett 259:74–80

    Article  PubMed  Google Scholar 

  • Guinebretière MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, Svensson B, Sanchis V, Nguyen-The C, Heyndrickx M, De Vos P (2008) Ecological diversification in the Bacillus cereus group. Environ Microbiol 10:851–865

  • Guinebretière MH, Velge P, Couvert O, Carlin F, Debuyser ML, Nguyen-The C (2010) The food poisoning power of Bacillus cereus group strains varies according to phylogenetic affiliation (groups I–VII), not to species affiliation. J Clin Microbiol 48:1388–1391

    Article  Google Scholar 

  • Guinebretière MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A (2013) Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63:31–40

  • Hansen BM, Hendriksen NB (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol 67:185–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolstø AB (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201

  • Hoton FM, Andrup L, Swiecicka I, Mahillon J (2005) The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151:2121–2124

    Article  CAS  PubMed  Google Scholar 

  • Hoton FM, Fornelos N, N’Guessan E, Hu X, Swiecicka I, Dierick K, Jääskeläinen E, Salkinoja-Salonen M, Mahillon J (2009) Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ Microbiol Reprod 1:177–183

  • Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction—amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen LB, Baloda S, Boye M, Arestrup FM (2001) Antimicrobial resistance among Pseudomonas spp. and Bacillus cereus group isolated from Danish agricultural soil. Environ Int 26:581–587

    Article  CAS  PubMed  Google Scholar 

  • Kalman S, Kiehne LK, Libs LJ, Yamamota T (1993) Cloning of novel CrylC-Type gene from a strain of Bacillus thuringiensis subsp. Galleriae. Appl Environ Microbiol 59:1131–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JB, Kim JM, Kim CH, Seo KS, Park YB, Choi NJ, Oh DH (2010) Emetic toxin producing Bacillus cereus Korean isolates contain genes encoding diarrheal-related enterotoxins. Int J Food Microbiol 144:182–186

  • Kim JB, Park JS, Kim MS, Hong SC, Park JH, Oh DH (2011) Genetic diversity of emetic toxin producing Bacillus cereus Korean strains. Int J Food Microbiol 150:66–72

    Article  CAS  PubMed  Google Scholar 

  • Lapidus A, Goltsman E, Auger S, Galleron N, Ségurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, Sanchis V, Nguen-The C, Lereclus D, Richardson P, Wincker P, Weissenbach J, Ehrlich SD, Sorokin A (2008) Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact 171:236–249

  • Lund T, Debuyser ML, Granum PE (2000) A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38:254–261

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Blanch JF, Sánchez G, Garay E, Aznar R (2011) Evaluation of phenotypic and PCR-based approaches for routine analysis of Bacillus cereus group foodborne isolates. Antonie Van Leeuwenhoek 99:697–709

    Article  PubMed  Google Scholar 

  • McKillip JL (2000) Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie Van Leeuwenhoek 77:393–399

  • Moravek M, Dietrich R, Buerk C, Broussole V, Guinebretière MH, Granum PE, Nguyen-The C, Märtlbauer E (2006) Determination of the toxin potential of Bacillus cereus isolates by quantitative enterotoxin analysis. FEMS Microbiol Lett 257:293–298

  • Mossel DAA, Koopman MJ, Jongerius E (1967) Enumeration of Bacillus cereus in foods. Appl Microbiol 15:650–653

    PubMed Central  CAS  PubMed  Google Scholar 

  • Notermans S, Batt CA (1998) A risk assessment approach for food-borne Bacillus cereus and its toxins. Symp Ser Soc Appl Microbiol 27:51S–61S

    Article  CAS  PubMed  Google Scholar 

  • Ouoba LI, Thorsen L, Varnam AH (2008) Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int J Food Microbiol 124:224–230

    Article  CAS  PubMed  Google Scholar 

  • Park YB, Kim JB, Shin SW, Kim JC, Cho SH, Lee BK, Ahn J, Kim JM, Oh DH (2009) Prevalence, genetic diversity, and antibiotic susceptibility of Bacillus cereus strains isolated from rice and cereals collected in Korea. J Food Protect 72:612–617

  • Pirttijärvi TS, Andersson MA, Scoging AC, Salkinoja-Salonen MS (1999) Evaluation of methods for recognizing strains of the Bacillus cereus group with food poisoning potential among industrial and environmental contaminants. Syst Appl Microbiol 2:133–144

    Article  Google Scholar 

  • Pruss BM, Dietrich R, Nibler B, Martlbauer E, Scherer S (1999) The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl Environ Microbiol 65:5436–5442

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy A, Moktan B, Sarkar PK (2007) Characteristics of Bacillus cereus strains from legume-based Indian fermented foods. Food Control 18:1555–1564

    Article  CAS  Google Scholar 

  • Setlow B, Setlow P (1994) Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accompanied by generation of abasic sites in spore DNA. J Bacteriol 176:2111–2113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shadrin AM, Shapyrina EV, Siunov AV, Severinov KV, Solonin AS (2007) Bacillus cereus pore-forming toxins hemolysin II and cytotoxin K: polymorphism and distribution of genes among representatives of the cereus group. Mikrobiologiia 76:462–470

    CAS  PubMed  Google Scholar 

  • Slamti L, Lereclus D (2002) A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svensson B, Monthán A, Shaheen R, Andersson M, Salkinoja-Salonen M, Christiansson A (2006) Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int Dairy J 16:740–749

    Article  CAS  Google Scholar 

  • Swiecicka L, Van der Aurera GA, Mahillon J (2006) Hemolytic and non-hemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. Microb Ecol 52:203–212

    Article  Google Scholar 

  • Valero M, Hernández-Herrero LA, Fernández PS, Salmerón MC (2002) Characterization of Bacillus cereus isolates from fresh vegetables and refrigerated minimally processed foods by biochemical and physiological tests. Food Microbiology 19:491–499

  • Van der Voort M, Kuipers OP, Buist G, De Vos WM, Abee T (2008) Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol 8:62. doi:10.1186/1471-2180-8-62

    Article  PubMed Central  PubMed  Google Scholar 

  • Vilain S, Luo Y, Hildreth MB, Brozel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl Environ Microbiol 72:4970–4977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wunschel D, Fox KF, Black GE, Fox A (1994) Discrimination among the B. cereus group, in comparison to B. subtilis, by structural carbohydrate profiles and ribosomal RNA spacer region PCR. Syst Appl Microbiol 17:625–635

    Article  Google Scholar 

  • Yang IC, Shih DY, Huang TP, Huang YP, Wang JY, Pan TM (2005) Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J Food Protect 68:2123–2130

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Tunisian Ministry of Higher Education and Scientific Research, in the ambit of the laboratory projects LR MBA206 and LR11ES31, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameur Cherif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaabouni, I., Barkallah, I., Hamdi, C. et al. Metabolic capacities and toxigenic potential as key drivers of Bacillus cereus ubiquity and adaptation. Ann Microbiol 65, 975–983 (2015). https://doi.org/10.1007/s13213-014-0941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0941-9

Keywords

Navigation