Skip to main content

Advertisement

Log in

Mesophilic strains of Aeromonas spp. can acquire the multidrug resistance plasmid pRAS1 in horizontal transfer experiments at low temperatures

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Both biotic and abiotic characteristics of an ecosystem play an important role in the horizontal transfer of DNA in nature. The abiotic factor temperature has a great impact on such transfers as it controls the metabolic activity of mesophilic microorganisms. Moreover, psychrophilic bacteria, which are not affected by low temperatures, are considered to be potential donors of DNA to mesophilic bacteria under temperature stress conditions. In our study, mesophilic Aeromonas spp. strains isolated from fresh fish were genotypically identified and used as recipients in in vitro conjugal transfer experiments using plasmid pRAS1 from psychrophilic strain Aeromonas salmonicida 718 at three different temperatures (8, 15 and 20 °C). The transfer of the plasmid was confirmed by identifying the elements of the integron in pRAS1. A low temperatures did not prevent the transfer of the pRAS1 plasmid to Aeromonas veronii, A. media, A. hydrophila and A. caviae strains, which showed detectable conjugation frequencies of 10–8 at 8 °C. In other strains of the same species, transconjugants were not detected, which indicated that the genetic background of each strain directly affected the ability to be a recipient of this plasmid at the temperatures tested. Our results demonstrate that mesophilic Aeromonas spp. strains are potential reservoirs of extrachromosomal genetic material. Implications of this plasmid transfer at low temperatures and its possible consequences for human health are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agersøa Y, Bruunb MS, Dalsgaardc I, Larsenb LJ (2007) The tetracycline resistance gene tet (E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 1(4):47–52

    Article  Google Scholar 

  • Arutyunov D, Frost LS (2013) F conjugation: back to the beginning. Plasmid 70(1):18–32

    Article  CAS  PubMed  Google Scholar 

  • Bello–López JM, Fernández–Rendón E, Curiel–Quesada E (2010) In vivo transfer of plasmid pRAS1 between Aeromonas salmonicida and Aeromonas hydrophila in artificially infected Cyprinus carpio L. J Fish Dis 33(3):251–259

    Article  PubMed  Google Scholar 

  • Bello–López JM, Vázquez–Ocampo NJ, Fernández–Rendón E, Curiel-Quesada E (2012) Inability of some Aeromonas hydrophila strains to act as recipients of plasmid pRAS1 in conjugal transfer experiments. Curr Microbiol 64(4):332–337

    Article  PubMed  Google Scholar 

  • Bresolin G, Neuhaus K, Scherer S, Fuchs TM (2006) Transcriptional analysis of long–term adaptation of Yersinia enterocolitica to low-temperature growth. J Bacteriol 188(8):2945–2958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casas C, Anderson EC, Ojo KK, Keith I, Whelan D, Rainnie D, Roberts MC (2005) Characterization of pRAS1-like plasmids from atypical North American psychrophilic Aeromonas salmonicida. FEMS Microbiol Lett 242(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • CLSI (Clinical and Laboratory Standards Institute) (2007) Performance standards for antimicrobial susceptibility testing; 17th Informational Supplement. CLSI document M100-S17. Clinical and Laboratory Standards Institute, Wayne

  • Coton M, Joffraud JJ, Mekhtiche L, Leroi F, Coton E (2013) Biodiversity and dynamics of the bacterial community of packaged king scallop (Pecten maximus) meat during cold storage. Food Microbiol 35(2):99–107

    Article  CAS  PubMed  Google Scholar 

  • Del Castillo CS, Hikima J, Jang HB, Nho SW, Jung TS, Wongtavatchai J, Kondo H, Hirono I, Takeyama H, Aoki T (2013) Comparative sequence analysis of a multidrug-resistant plasmid from Aeromonas hydrophila. Antimicrob Agents Chemother 57(1):120–129

    Article  PubMed Central  PubMed  Google Scholar 

  • Džidic S, Šuškovic J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46(1):11–21

    Google Scholar 

  • Mazodier P, Davies J (1991) Gene transfer between distantly related bacteria. Annu Rev Genet 25:147–171

    Article  CAS  PubMed  Google Scholar 

  • Mejlholm O, Devitt TD, Dalgaar P (2012) Effect of brine marination on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat shrimp (Pandalus borealis). Int J Food Microbiol 157(1):16–27

    Article  PubMed  Google Scholar 

  • Moriguchi K, Edahiro N, Yamamoto S, Tanaka K, Kurata N, Suzuki K (2013) Transkingdom genetic transfer from Escherichia coli to Saccharomyces cerevisiae as a simple gene introduction tool. Appl Environ Microbiol 79(14):4393–4400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen I, Tribble GD, Fiehn NE, Wang BY (2013) Bacterial sex in dental plaque. J Oral Microbiol. doi:10.3402/jom.v5i0.20736

    Google Scholar 

  • Rhodes G, Huys H, Swings J, McGann P, Hiney M, Smith P, Pickup RW (2000) Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A. Appl Environ Microbiol 66(9):3883–3890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rice LB, Sahm D, Binomo RA (2003) Mechanisms of resistance to antibacterial agents. In: Murray PR, Baron EJ, Jorgensen JH, Phaller MA, Yolken RH (eds) Manual of clinical mi- crobiology. ASM Press, Washington DC, pp 1074–1101

    Google Scholar 

  • Sánchez–Alonso I, Martinez I, Sánchez–Valencia J, Careche M (2012) Estimation of freezing storage time and quality changes in hake (Merluccius merluccius L.) by low field NMR. Food Chem 135(3):1626–1634

    Article  PubMed  Google Scholar 

  • Sandaa RA, Enger O (1994) Transfer in marine sediments of the naturally occurring plasmid pRAS1 encoding multiple antibiotic resistance. Appl Environ Microbiol 60(12):4234–4238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarria-Guzmán Y, López-Ramírez MP, Chávez-Romero Y, Ruiz-Romero E, Dendooven L, Bello-López JM (2014) Identification of antibiotic resistance cassettes in class 1 integrons in Aeromonas spp. strains isolated from fresh fish (Cyprinus carpio L.). Curr Microbiol 68(5):581–586

    Article  PubMed  Google Scholar 

  • Schmidt AS, Bruun MS, Dalsgaard I, Larsen JL (2001) Incidence, distribution and spread of tetracycline resistance determinants and integron–associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol 67(12):5675–5682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soler L, Yáñez MA, Chacon MR, Aguilera–Arreola MG, Catalán V, Figueras MJ, Martínez–Murcia AJ (2004) Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54(5):1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Sørum H, L’Abée–Lund TM, Solberg A, Wold A (2003) Integron–containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida. Antimicrob Agents Chemoth 47(4):1285–1290

    Article  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19(24):6823–6831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Shi L, Li L, Guo S, Zhang X, Yamasaki S, Miyoshi S, Shinoda S (2004) Identification and characterization of class 1 integron resistance gene cassettes among Salmonella strains isolated from healthy humans in China. Microbiol Immunol 48(4):639–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the ‘Instituto de Ciencia y Tecnología del Distrito Federal (Mexico)’ project ICyTDF/295/2009. Z. H.–M., M.P. L.–R., L. D.-B., and J.M. B.–L., received grant–aided support from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACYT, Mexico). The psychrophilic strain of Aeromonas salmonicida subsp. salmonicida 718 was kindly provided by Dr. Glenn Rhodes, Centre for Ecology and Hydrology, Lancaster, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Bello–López.

Additional information

Zahuiti Hernández–Montañez and María Patricia López–Ramírez contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández–Montañez, Z., López–Ramírez, M.P., Delgado–Balbuena, L. et al. Mesophilic strains of Aeromonas spp. can acquire the multidrug resistance plasmid pRAS1 in horizontal transfer experiments at low temperatures. Ann Microbiol 65, 827–831 (2015). https://doi.org/10.1007/s13213-014-0923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0923-y

Keywords

Navigation