Skip to main content
Log in

Analysis of glucose-6-phosphate dehydrogenase of the cyanobacterium Synechococcus sp. PCC 7942 in the zwf mutant Escherichia coli DF214 cells

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to express the zwf gene of Synechococcus sp. PCC 7942 in zwf mutant Escherichia coli DF214 cells and to analyse glucose-6-phosphate dehydrogenase (G6PDH) activity. Initially, mutant cells were transformed with plasmid pNUT1 containing a Synechococcus sp. PCC 7942 zwf gene with a 1 kb upstream region that is expected to contain promoter elements. Transformant DF214 cells were not complemented by this fragment in a glucose minimal medium, nor did they exhibit statistically meaningful G6PDH activity. Therefore, the zwf gene was cloned in the lac operon to express the Zwf as a fusion protein; this yielded the construct pSG162. The pSG162 transformant E. coli DF214 cells were complemented in a glucose minimal medium, indicating that cyanobacterial Zwf protein fused with the part of LacZ′ polypeptide, enabling the cells to utilize glucose via the oxidative pentose phosphate pathway. Compared with wild-type E. coli cells, approximately ten times more G6PDH activity was measured in transformant cells. This indicated that the Synechococcus sp. PCC 7942 zwf gene was expressed under the control of the E. coli lac promoter as a fusion protein and the zwf product was converted into an active G6PDH form. Analyses was also carried out to determine whether dithiothreitol (DTT) was an in vitro reducing agent affected the enzyme activity, as was previously reported for this cyanobacterial strain. The results showed no variation in enzyme activity in the reduced assay conditions. Therefore, the zwf mutant E. coli strain DF214 was found to provide a rapid system for analysis of cyanobacterial G6PDH enzymes, but not for the redox state analysis of this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LE, Nehrlich SC, Champigny M (1978) Light modulation of enzyme activity. Activation of the light effect mediators by reduction and modulation of enzyme activity by thiol-disulfide exchange? Plant Physiol 61:601–605

    Article  PubMed  CAS  Google Scholar 

  • Austin PA, Ross IS, Mills JD (1992) Light/dark regulation of photosynthetic enzymes within intact cells of the cyanobacterium Nostoc sp. Mac. Biochim Biophys Acta 1099:226–232

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Copeland L, Turner JF (1987) The regulation of glycolysis and the pentose phosphate pathway. In: Davies DD (ed) The biochemistry of plants vol.11. Academic, San Diego, pp 107–128

    Google Scholar 

  • Cossar JD, Rowell P, Stewart WP (1984) Thioredoxin as a modulator of glucose -6- phosphate dehydrogenase in a N2-fixing cyanobacterium. J Gen Microbiol 130:991–998

    CAS  Google Scholar 

  • Gleason FK (1994) Thioredoxins in cyanobacteria. Structure and redox regulation of enzyme activity. In: Bryont DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 714–729

    Google Scholar 

  • Gleason FK (1996) Glucose-6-phosphate dehydrogenase from the cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics of redox modulation. Arch Biochem Biophys 384:277–283

    Article  Google Scholar 

  • Grant SGN, Jesseet J, Bloomt FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  PubMed  CAS  Google Scholar 

  • Hylemon PB, Phibbs PV Jr (1972) Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeroginosa. Biochem Biophys Res Commun 48:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Ihlenfeld MJA, Gibson A (1975) CO2 fixation and its regulation in Anacystis nidulans (Synechococcus). Arch Microbiol 102:13–21

    Article  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Karakaya H, Mann NH (1998) zwf mutant Escherichia coli DF214 suşunun bir Anabaena sp. PCC7120 zwf fragmenti taşıyan plazmid ile genetik komplementasyonu üzerine araştırmalar. XIV. Ulusal Biyoloji Kongresi Cilt III: 100–113

  • Karakaya H, Ay MT, Ozkul K, Mann NH (2008) A Δzwf (glucose-6-phosphate dehydrogenase) mutant of the cyanobacterium Synechocystis sp. PCC 6803 exhibits unimpaired dark viability. Annal Microbiol 58:281–286

    Article  CAS  Google Scholar 

  • Marcus L, Hartnett J, Storts DR (1996) The pGEM-T and pGEM-T easy vector systems. Promega Notes Mag 58:36–38

    Google Scholar 

  • Newman J, Karakaya H, Scanlan DJ, Mann NH (1995) A comparison of gene organisation in the zwf region of the genomes of cyanobacteria Synechococcus sp. PCC 7942 and Anabeana sp. PCC 7120. FEMS Lett 133:187–193

    Article  CAS  Google Scholar 

  • Pelroy RA, Bassham JA (1972) Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch Microbiol 86:25–38

    CAS  Google Scholar 

  • Rowell P, Kerby NW (1992) Potential and commercial applications for photosynthetic prokaryots. In: Fay P, van Baalen C (eds) Photosynthetic prokaryotes. Biothecnology handbooks vol. 6. Plenium Press, New York, pp 233–266

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scanlan DJ, Newman J, Sebaihia M, Mann NH, Carr NG (1992) Cloning and sequence analysis of the glucose-6-phosphate dehydrogenase gene from the cyanobacterium Synechococcus. sp PCC 7942. Plant Mol Biol 19:877–880

    Article  PubMed  CAS  Google Scholar 

  • Scanlan DJ, Sundaram S, Newman J, Mann NH, Carr NG (1995) Characterisation of a zwf mutant of Synechococcus sp. strain PCC 7942. J Bacteriol 177:2550–2553

    PubMed  CAS  Google Scholar 

  • Schaeffer F, Stanier RY (1978) Glucose-6-phosphate dehydrogenase of Anabaena sp. kinetic and molecular properties. Arch Microbiol 116:9–19

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publication, Oxford, pp 47–85

    Google Scholar 

  • Summers ML, Meeks JC, Chu S, Wolf RE Jr (1995a) Nucleotide sequence of an operon in Nostoc sp. strain ATCC 29133 encoding four genes of the oxidative pentose phosphate cycle. Plant Physiol 107:267–268

    Article  PubMed  CAS  Google Scholar 

  • Summers ML, Wallis JG, Campbell EL, Meeks JC (1995b) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177:6184–6194

    PubMed  CAS  Google Scholar 

  • Sundaram S, Karakaya H, Scanlan DJ, Mann NH (1998) Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process. Microbiol SGM 144:1549–1556

    Article  CAS  Google Scholar 

  • Tabita FR (1994) The biochemistry and molecular regulation of carbon dioxide metabolism in cyanobacteria. In: Bryont DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 437–467

    Chapter  Google Scholar 

  • Tandeu de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104:119–190

    Article  Google Scholar 

  • Vinapol RT, Hillmann JD, Schulman H, Reznikoff WS, Fraenkel DG (1975) New phosphoglucose isomerase mutants of Escherichia coli. J Bacteriol 122:1172–1174

    Google Scholar 

  • Wenderoth I, Scheibe R, Schaewen A (1997) Identification of the cystein residues involved in redox modification of plant plastitic glucose-6-phosphatedehydrogenase. J Biol Chem 272:26985–26990

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Peron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC19 vectors. Gene 33:103–119

    Article  Google Scholar 

  • Yee BC, de la Torre A, Crawford NA, Lara C, Charlson DE, Buchanan BB (1981) The ferredoxin/thioredoxin systhem of enzyme regulation on a cyanobacterium. Arch Microbiol 130:14–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. D.J. Scanlan of University of Warwick for kindly supplying us with pNUT1. This study was supported by the Research Fund of the University of Ondokuz Mayıs, Samsun, Turkey, through projects F-261 and PYO FEN 1904 09 21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydar Karakaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakaya, H., Erdem, F., Özkul, K. et al. Analysis of glucose-6-phosphate dehydrogenase of the cyanobacterium Synechococcus sp. PCC 7942 in the zwf mutant Escherichia coli DF214 cells. Ann Microbiol 63, 1319–1325 (2013). https://doi.org/10.1007/s13213-012-0591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0591-8

Keywords

Navigation