Skip to main content
Log in

Lipase production by Serratia marcescens strain SN5gR isolated from the scat of lion-tailed macaque (Macaca silenus) in Silent Valley National Park, a biodiversity hotspot in India

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

An extracellular lipase-producing bacterium was isolated from a fecal sample of lion-tailed macaque (Macaca silenus), an endangered Old World monkey that is endemic to the Western Ghats of South India. Morphological, biochemical and molecular analyses identified the bacterium as Serratia marcescens. Production of lipase was investigated in shake-flask culture. Optimum tributyrin concentration of 1.5 % was found to be the most suitable triglyceride to increase lipase production (13.3 U ml−1). The next best lipid source observed was olive oil (11.94 U ml−1), followed by castor oil, coconut oil and palm oil. Analyzing the effect of different carbon sources on lipase production revealed that 2 % glucose yielded higher lipase production than the other tested carbon sources. Investigations on suitable nitrogen source for lipase production revealed that 2 % meat extract yielded higher lipase production. The most suitable trace element for maximum lipase production was zinc sulfate, followed by magnesium sulfate and copper sulfate. Partial characterization of the crude lipase revealed that pH 7.0 and a temperature of 40 °C gave optimal lipase activity. Enzymatic activity of the crude sample was retained over a wide temperature range (20–75 °C), and 70 % of enzyme activity was retained at 60 °C. Testing the effect of various organic solvents on lipase activity revealed that hexadecane increased lipase activity by 85 % over the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adarsh VK, Mishra M, Chowdhury S, Sudarshan M, Thakur AR, Chaudhuri SR (2007) Studies on metal microbe interaction of three bacterial isolates from East Calcutta Wetland. Online J Biol Sci 7:80–88

    Article  CAS  Google Scholar 

  • Adham NZ, Ahmed EM (2009) Extracellular lipase of Aspergillus niger NRRL3; production, partial purification and properties. Indian J Microbiol 49:77–83

    Article  PubMed  CAS  Google Scholar 

  • Akbari N, Daneshjoo S, Akbari J, Khajeh K (2011) Isolation, characterization, and catalytic properties of a novel lipase which is activated in ionic liquids and organic solvents. Appl Biochem Biotechnol 165(3–4):785–794

    Article  PubMed  CAS  Google Scholar 

  • Alkan H, Baysal Z, Uyar F, Dogru M (2007) Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Appl Biochem Biotechnol 136:183–192

    Article  PubMed  CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  PubMed  CAS  Google Scholar 

  • Baharum SN, Salleh AB, Razak CNA, Basri M, Rahman MBA, Rahman RNZRA (2003) Organic solvent tolerant lipase by Pseudomonas sp. strain S5: stability of enzyme in organic solvent and physical factors affecting its production. Ann Microbiol 53:75–83

    CAS  Google Scholar 

  • Bapiraju KVVSN, Sujatha P, Ellaiah P, Ramana T (2005) Sequential parametric optimization of lipase production by a mutant strain Rhizopus sp. BTNT-2. J Basic Microbiol 45(4):257–273

    Article  PubMed  CAS  Google Scholar 

  • Bora L, Kalita MC (2002) Production of thermostable alkaline lipase on vegetable oils from a thermophilic Bacillus sp. DH4, characterization and its potential applications as detergent additive. J Chem Technol Biotechnol 83:688–693

    Article  Google Scholar 

  • Cardenas F, Alvarez E, Castro-Alvarez MS, Sanchez-Montero JM, Valmaseda M, Elson SW et al (2001) Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J Mol Catal B Enzym 14:111–123

    Article  CAS  Google Scholar 

  • Cygler M, Schrag JD (1997) Structure as basis for understanding interfacial properties of lipases. Methods Enzymol 284:3–27

    Article  PubMed  CAS  Google Scholar 

  • Esakkiraj P, Rajkumarbharathi M, Palavesam A, Immanuel G (2010) Lipase production by Staphylococcus epidermidis CMST-Pi isolated from the gut of shrimp Penaeus indicus. Ann Microbiol 60:37–42

    Article  CAS  Google Scholar 

  • Essamri M, Deyris V, Comeau L (1998) Optimization of lipase production by Rhizopus oryzae and study on the stability oflipase activity in organic solvents. J Biotechnol 60:97–103

    Article  CAS  Google Scholar 

  • Fang Y, Lu Z, Fengxia LV, Bie X, Liu S, Ding Z, Xu W (2006) A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase. Curr Microbiol 53:510–515

    Article  PubMed  CAS  Google Scholar 

  • Gaur R, Gupta A, Khare SK (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Technol 99:4796–4802

    Article  Google Scholar 

  • Gomori G (1955) Preparation of buffers for use in enzyme studies. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic, New York, pp 138–146

    Chapter  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  PubMed  CAS  Google Scholar 

  • Imandi SB, Karanam SK, Garapati HR (2010) Optimization of media constituents for the production of lipase in solid state fermentation by Yarrowia lipolytica from palm Kernal cake (Elaeis guineensis). Adv Biosci Biotechnol 1:115–121

    Article  CAS  Google Scholar 

  • Immanuel G, Esakkiraj P, Austin JG, Iyapparaj P, Palavesam A (2008) Investigation of lipase production by milk isolate Serratia rubidaea. Food Technol Biotechnol 46(1):60–65

    CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  PubMed  CAS  Google Scholar 

  • Jaeger K-E, Ransac S, Dijkstra BW, Colson C, Van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  PubMed  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  PubMed  CAS  Google Scholar 

  • Kantak JB, Bagade AV, Mahajan SA, Pawar SP, Shouche YS, Prabhune AA (2011) Isolation, identification and optimization of a new extracellular lipase producing strain of Rhizopus sp. Appl Biochem Biotechnol 164(7):969–978

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Park SY, Lee JK, Oh TK (1998) Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci Biotech Biochem 62:66–71

    Article  CAS  Google Scholar 

  • Kim SH, Park IH, Lee SC, Lee YS, Yi Z, Kim CM, Ahn SC, Choi YL (2008) Discovery of three novel lipase (lipA1, lipA2, and lipA3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Appl Microbiol Biotechnol 77:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Ko WH, Wang IT, Ann PJ (2005) A simple method for detection of lipolytic microorganisms in soils. Soil Biol Biochem 37:597–599

    Article  CAS  Google Scholar 

  • Kumar R, Sharma A, Kumar A, Singh D (2012) Lipase from Bacillus pumilus RK31: production, purification and some properties. World Appl Sci J 16(7):940–948

    CAS  Google Scholar 

  • Lin ES, Ko HC (2005) Glucose stimulates production of the alkaline-thermostable lipase of the edible basidiomycete Antrodia cinnamomea. Enzyme Microb Technol 37:261–265

    Article  CAS  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516

    Article  PubMed  CAS  Google Scholar 

  • Mongkolthanaruk W, Dharmsthiti S (2002) Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. Intern Biodeterio Biodegrad 50:101–105

    Article  CAS  Google Scholar 

  • Musantra A (1992) Use of lipase in the resolution of racemic ibuprofen. Appl Microbiol Biotechnol 38:61–66

    Google Scholar 

  • Palekar AA, Vasudevan PT, Yan S (2000) Purification of lipase: a review. Biocatal Biotransform 18:177–200

    Article  CAS  Google Scholar 

  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    PubMed  CAS  Google Scholar 

  • Pfeffer J, Richter S, Nieveler J, Hansen CE, Rhlid RB, Schmid RD, Rusnak M (2006) High yield expression of lipase A from Candida antarctica in the methylotrophic yeast Pichia pastoris and its purification and characterization. Appl Microbiol Biotechnol 72:931–938

    Article  PubMed  CAS  Google Scholar 

  • Prazeres JN, Bortollotti Cruz JA, Pastore GM (2006) Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol 37:505–509

    Article  Google Scholar 

  • Rajendran A, Palanisamy A, Thangavelu V (2008) Evaluation of medium components by Plackett–Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chin J Biotechnol 24(3):436–444

    Article  CAS  Google Scholar 

  • Rodriguez JA, Mateos JC, Nungaray J, Gonzalez V, Bhagnagar T, Roussos S, Cordova J, Baratti J (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269

    Article  CAS  Google Scholar 

  • Ruchi G, Anshu G, Khare SK (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Technol 99:4796–4802

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Dannert C, Sztajer H, Stöcklein W, Menge U, Schmid RD (1994) Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim Biophys Acta 1214:43–53

    Article  PubMed  CAS  Google Scholar 

  • Schrag JD, Cygler M (1997) Lipases and alpha/beta hydrolase fold. Lipases Part A. Methods Enzymol 284:85–107

    Article  PubMed  CAS  Google Scholar 

  • Sekhon A, Dahiya N, Tiwari RP, Hoondal GS (2005) Properties of a thermostable extracellular lipase from Bacillus megaterium AKG-1. J Basic Microbiol 45(2):147–154

    Article  PubMed  CAS  Google Scholar 

  • Singh BK (2009) Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol 28(3):111–116

    Article  PubMed  Google Scholar 

  • Songer JG (1997) Bacterial phospholipases and their role in virulence. Trends Microbiol 5:156–161

    Article  PubMed  CAS  Google Scholar 

  • Sorenson S (1909) Uber die Messung und die Bedeutung der Wasserstoff ionen Konzentration bei Enzymatischen Prozessen. Biochem Z 21:131

    Google Scholar 

  • Titball RW (1998) Bacterial phospholipases. Soc Appl Bacteriol Symp Ser 27:127S–137S

    CAS  Google Scholar 

  • Treichel H, de Oliveira D, Mazutti MA, Luccio MD, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196

    Article  CAS  Google Scholar 

  • Wang Y, Srivastava KC, Shen GJ, Wang HY (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J Ferment Bioeng 79:433–438

    Article  CAS  Google Scholar 

  • Whangsuk W, Sungkeeree P, Thiengmag S, Kerdwong J, Sallabhan R, Mongkolsuk S, Loprasert S (2012) Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production. Mol Biotechnol. doi:10.1007/s12033-012-9518-7

  • Zhao LL, Xu JH, Zhao J, Pan J, Wang ZL (2008) Biochemical properties and potential applications of an organic solvent tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem 43:626–633

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.G., S.M. and K.G. acknowledge the support of technical facilities available in Presidency University and Bethune College (Govt. of West Bengal, India) respectively. B.G., K.G. and S.M. also acknowledge the financial assistance from the University Grants Commission (Govt. of India) for carrying out this research program. The authors also wish to express their sincere regards to the anonymous referees and the editorial board for the helpful comments to improve the manuscript of the research paper.

Competing interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souryadeep Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, B., Gupta, K. & Mukherjee, S. Lipase production by Serratia marcescens strain SN5gR isolated from the scat of lion-tailed macaque (Macaca silenus) in Silent Valley National Park, a biodiversity hotspot in India. Ann Microbiol 63, 649–659 (2013). https://doi.org/10.1007/s13213-012-0515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0515-7

Keywords

Navigation