Skip to main content

Advertisement

Log in

Soil beneficial bacteria and their role in plant growth promotion: a review

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Soil bacteria are very important in biogeochemical cycles and have been used for crop production for decades. Plant–bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Free-living soil bacteria beneficial to plant growth, usually referred to as plant growth promoting rhizobacteria (PGPR), are capable of promoting plant growth by colonizing the plant root. PGPR are also termed plant health promoting rhizobacteria (PHPR) or nodule promoting rhizobacteria (NPR). These are associated with the rhizosphere, which is an important soil ecological environment for plant–microbe interactions. Symbiotic nitrogen-fixing bacteria include the cyanobacteria of the genera Rhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium, Sinorhizobium and Mesorhizobium. Free-living nitrogen-fixing bacteria or associative nitrogen fixers, for example bacteria belonging to the species Azospirillum, Enterobacter, Klebsiella and Pseudomonas, have been shown to attach to the root and efficiently colonize root surfaces. PGPR have the potential to contribute to sustainable plant growth promotion. Generally, PGPR function in three different ways: synthesizing particular compounds for the plants, facilitating the uptake of certain nutrients from the soil, and lessening or preventing the plants from diseases. Plant growth promotion and development can be facilitated both directly and indirectly. Indirect plant growth promotion includes the prevention of the deleterious effects of phytopathogenic organisms. This can be achieved by the production of siderophores, i.e. small metal-binding molecules. Biological control of soil-borne plant pathogens and the synthesis of antibiotics have also been reported in several bacterial species. Another mechanism by which PGPR can inhibit phytopathogens is the production of hydrogen cyanide (HCN) and/or fungal cell wall degrading enzymes, e.g., chitinase and ß-1,3-glucanase. Direct plant growth promotion includes symbiotic and non-symbiotic PGPR which function through production of plant hormones such as auxins, cytokinins, gibberellins, ethylene and abscisic acid. Production of indole-3-ethanol or indole-3-acetic acid (IAA), the compounds belonging to auxins, have been reported for several bacterial genera. Some PGPR function as a sink for 1-aminocyclopropane-1-carboxylate (ACC), the immediate precursor of ethylene in higher plants, by hydrolyzing it into α-ketobutyrate and ammonia, and in this way promote root growth by lowering indigenous ethylene levels in the micro-rhizo environment. PGPR also help in solubilization of mineral phosphates and other nutrients, enhance resistance to stress, stabilize soil aggregates, and improve soil structure and organic matter content. PGPR retain more soil organic N, and other nutrients in the plant–soil system, thus reducing the need for fertilizer N and P and enhancing release of the nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Alla MH (1994a) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Abd-Alla MH (1994b) Use of organic phosphorus by Rhizobium leguminosarum biovar. viceae phosphatases. Biol Fertil Soils 18:216–218

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and Flourescent pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Alvarez MI, Sueldo RJ, Barassi CA (1996) Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal Res Commun 24:101–107

    Google Scholar 

  • Angle JS (1986) Pectic and proteolytic enzymes produced by fast-and slow-growing soybean Rhizobia. Soil Biol Biochem 18:115–116

    Article  CAS  Google Scholar 

  • Anjum MA, Sajjad MR, Akhtar N, Qureshi MA, Iqbal A, Jami AR, Hassan M (2007) Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45(2):135–143

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L). Plant Soil 204:57–68

    Article  CAS  Google Scholar 

  • Arora P, Gaur AC (1979) Microbial solubilization of different inorganic phosphates. Indian J Exp Biol 17:1258–1261

    CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1991) Effects of soil properties and trace elements on ethylene production in soils. Soil Sci 151:377–386

    Article  CAS  Google Scholar 

  • Arshad M, Frenkenberger WT Jr (1993) Microbial production of plant growth regulators. In: Meeting FB Jr (ed) Soil microbial ecology. Dekker, New York, pp 307–347

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (1998) Plant growth regulating substances in the rhizosphere. Microbial production and function. Adv Agron 62:46–51

    Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in brassica junceal. Biol Fertil Soils 35(23):1–237

    Google Scholar 

  • Babu-Khan S, Yeo C, Martin WL, Duron MR, Rogers R, Goldstein A (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978

    PubMed  CAS  Google Scholar 

  • Balandreau J (2002) The spermosphere model to select for plant growth promoting rhizobacteria. In: Kennedy IR, Choudhury ATMA (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 55–63

    Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillums seropidicae. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Banerjee MR, Yasmin L (2002) Sulfur oxidizing rhizobacteria: an innovative environment friendly soil biotechnological tool for better canola production. Proceeding of AGROENVIRON. Cairo, Egypt, 2002, October 26–29, pp 1-7

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In: Rai MK (ed) Handbook of microbial biofertilizers. Haworth Press, New York

    Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Barassi CA, Creus CM, Casanovas EM, Sueldo RJ (2000) Could Azospirillum mitigate abiotic stress effects in plants? Auburn University. Web site: http://www.ag.auburn.edu/argentina/pdfmanuscripts/brassi.pdf

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate solubilizing bacteria. J Appl Bacteriol 40:129–134

    PubMed  CAS  Google Scholar 

  • Bashan Y (1998) Azospirillum plant growth-promoting strains are nonpathogenic on tomato, pepper, cotton, and wheat. Can J Microbiol 44:168–174

    Article  CAS  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Biederbeck VO, Lupwayi NZ, Haanson KG, Rice WA, Zentner RP (2000) Effect of long-term rotation with lentis on rhizosphere ecology and on endophytic Rhizobia in wheat. Abstract of the 17th North American Conference on Symbiotic Nitrogen Fixation. Laval University Quebec, Canada, pp 23–28, July 2000

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolf BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 90:880–886

    Article  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  • Bottomley PJ, Dughri MH (1989) Population size and distribution of Rhizobium leguminosarum biovar trifolii in relation to total soil bacteria and soil depth. Appl Environ Microbiol 55:959–964

    PubMed  CAS  Google Scholar 

  • Bottomley PJ, Maggard SP (1990) Determination of viability within serotypes of a soil population of Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 56:533–540

    PubMed  CAS  Google Scholar 

  • Boyer GL, Kane SA, Alexander JA, Aronson DB (1999) Siderophore formation in iron-limited cultures of Frankia sp. strain 52065 and Frankia sp. strain CeSI5. Can J Bot 77:1316–1320

    Google Scholar 

  • Brannen PM, Backman PA (1994) Suppression of Fusarium wilt of cotton with Bacillus subtilis hopper box formulations. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria, proceedings from the third international workshop on plant growth-promoting rhizobacteria. CSIRO Press, Adelaide, pp 83–85

    Google Scholar 

  • Brierley JA (1985) Use of microorganisms for mining metals. In: Halvorson HO, Pramer D, Rogul M (eds) Engineered organisims in the environment: scientifc issues. ASM Press, Washington, pp 141–146

    Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197

    Article  CAS  Google Scholar 

  • Burd G, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Burns RG (1983) Extracellular enzyme-substrate interactions in soil. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in their natural environment. Cambridge University Press, Cambridge, pp 249–298

    Google Scholar 

  • Burr TJ, Caesar A (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2:1–20

    Article  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Çakmakçi R, Erat M, Erdoğan ÜG, Dönmez MF (2007) The influence of PGPR on growth parameters, antioxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  CAS  Google Scholar 

  • Callegan RP, Nobre MF, McTernan PM, John BR, Navarro-González R, McKay CP, da Costa MS, Rainey FA (2008) Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258

    Article  PubMed  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996a) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996b) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosaurm biovar phaseoli. Appl Environ Microbiol 62:2767–2772

    PubMed  CAS  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, deLajudie P, Dreyfus B (2000) Photosynthetic bradyRhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130

    Google Scholar 

  • Chatterjee AK, Buchanan GE, Behrens MK, Starr MP (1978) Synthesis and excretion of polygaracturonic and transeliminase in Erwinia, Yersinia, and Klebsiella species. Can J Microbiol 25:94–102

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Cleland RE (1990) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer, Dordrecht, pp 132–148

    Google Scholar 

  • Cleyet-Marcel JC, Larcher M, Bertrand H, Rapior S, Pinochet X (2001) Plant growth enhancement by rhizobacteria. In: MorotGaudry JF (ed) Nitrogen assimilation by plants: physiological, biochemicval and molecular aspects. Science Publishers, Plymouth, pp 185–197

    Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175

    Article  CAS  Google Scholar 

  • Dakora FD (1995) Plant flavonoids: biological molecules for useful exploitation. Aust J Plant Physiol 22:7–99

    Article  Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49

    Article  CAS  Google Scholar 

  • Dangar TK, Basu PS (1987) Studies on plant growth substances, IAA metabolism and nitrogenase activity in root nodules of Phaseolus aureus Roxb. var. mungo. Biol Plant 29:350–354

    Article  CAS  Google Scholar 

  • Davies PJ (1995) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones: physiology, biochemistry, and molecular biology, 2nd edn. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286

    Article  CAS  Google Scholar 

  • Dazzo FB, Yanni YG, Rizk R, De Bruijn FJ, Rademaker J, Squartini A, Corich V, Mateos P, Martinez-Molina E et al (2000) Progress in multinational collaborative studies on the beneficial association between Rhizobium Ieguminosarum by trifolii and rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRR1, Los Banos, Philippines, pp 167–189

    Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Delvasto P, Valverde A, Ballester A, Muñoz JA, González F, Blázquez ML, Igual JM, García-Balboa C (2008) Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy 92:124–129

    Article  CAS  Google Scholar 

  • Deng S, Summers ML, Kahn ML, McDermontt TR (1998) Cloning and characterization of a Rhizobium meliloti nonspecific acid phosphatase. Arch Microbiol 170:18–26

    Article  PubMed  CAS  Google Scholar 

  • Deng S, Elkins JG, Da LH, Botero LM, McDermott TR (2001) Cloning and characterization of a second acid phosphatase from Sinorhizobium meliloti strain 104A14. Arch Microbiol 176:255–263

    Article  PubMed  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa C, Aleš S, Dirk M, Georg B, Erika K (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microb 54:163–172

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Duff RB, Webley DM (1959) 2-Ketogluconic acid as a natural chelator produced by soil bacteria. Chem Ind 1376-1377

  • Dutta S, Mishra AK, Kuma BSD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 12:1693–1703

    Google Scholar 

  • Egamberdiyeva D (2005) Plant growth promoting rhizobacteria isolated from a calsisol in semi arid region of Uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168:94–99

    Article  CAS  Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology, 2nd edn. Dekker, New York, p 646

    Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of Rhizobia in the control of root diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • Elbadry M, El-Bassel A, Elbanna K (1999) Occurrence and dynamics of phototrophic purple nonsulphur bacteria compared with other asymbiotic nitrogen fixers in rice fields of Egypt. World J Microbiol Biotechnol 15:359–362

    Article  Google Scholar 

  • El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils 28:377–381

    Article  CAS  Google Scholar 

  • El Mohandes MAO (1999) The use of associative diazotrophs with different rates of nitrogen fertilization and compost to enhance growth and N2-fixation of wheat. Bulletin of Faculty of Agriculture, University of Cairo 50:729-753

    Google Scholar 

  • Esashi Y (1991) Ethylene and seed germination. In: Matoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 133–157

    Google Scholar 

  • Estrada-delos Station P, Bustitio-Cristales R, Caballero-Mallado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:279–2798

    Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum-plant associations. CRC Press, Boca Raton, pp 77–84

    Google Scholar 

  • Fayez M, Daw ZY (1987) Effect of inoculation with different strains of Azospirillum brasilense on cotton (Gossypium barbadense). Biol Fertil Soils 4(9):1–95

    Google Scholar 

  • Fraga R, Rodríguez H, Gonzalez T (2001) Transfer of the gene encoding the Nap A acid phosphatase from Morganella morganii to a Burkholderia cepacia strain. Acta Biotechnol 21:359–369

    Article  CAS  Google Scholar 

  • Frankenberger WTJ, Arshad M (1995) Photohormones in soil: microbial production and function. Dekker, New York, p 503

    Google Scholar 

  • Friedlander AM, Welkos SL, Pitt MLM, Ezzell JW, Worsham PL, Rose KJ (1993) Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis 167:1239–1242

    Google Scholar 

  • Galal YGM, El-Ghandour IA, Aly SS, Soliman S, Gadalla A (2000) Non-isotopic method for the quantification of biological nitrogen fixation and wheat production under field conditions. Biol Fertil Soils 32:47–51

    Article  CAS  Google Scholar 

  • Ganguly TK, Jana AK, Moitra DN (1999) An evaluation of agronomic potential of Azospirillum brasilense and Bacillus megaterium in fibre-legume-cereal system in an Aeric haplaquept. Indian J Agric Res 33:35–39

    Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growthpromoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Article  PubMed  Google Scholar 

  • Gilreath JP, Noling JW, Mirusso J, Nance J, Eger J, Gilreath P (2001) Telone and herbicides: do's, don’ts, and maybe's-a primer for tomorrow's farmer. FACTS Proceedings of the IFAS, University of Florida, pp 37-40

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to cleanup the environment. Biotechnol Adv 21(3):83–393

    Google Scholar 

  • Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Glick BR, Pasternak JJ (eds) Molecular biotechnology principles and applications of recombinant DNA, 3rd edn. ASM Press, Washington, pp 436–454

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of microbial phosphates: a historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by Gram negative bacteria. In: Torriani-Gorni A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, pp 197–203

    Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hortic 12:185–193

    Google Scholar 

  • Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: one hundred years of insolubility. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 91–96

    Chapter  Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74

    Article  CAS  Google Scholar 

  • Goldstein AH, Krishnaraj PU (2007) Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: Velázquez E, Rodríguez-Barrueco C (eds) First International meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 203–213

    Chapter  Google Scholar 

  • Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and over production of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71

    Article  PubMed  CAS  Google Scholar 

  • Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov and Ralstonia basilensis. Int J Syst Evol Microbiol 51:1773–1782

    PubMed  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    PubMed  Google Scholar 

  • Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX (2004) Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biol Control 29:66–72

    Article  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertl Soil 35:295–301

    Google Scholar 

  • Gutiérrez-Mañero FG, Ramos-solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haansuu P, Vuorela P, Haahtela K (1999) Detection of antimicrobial and 45Ca2+-transport blocking activity in Frankia culture broth extracts. Pharm Pharmacol Lett 1:1–4

    Google Scholar 

  • Hagen G (1990) The control of gene expression by auxin. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer, Dordrecht, pp 149–163

    Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharya P, Chakrabarthy PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36(8):1–92

    Google Scholar 

  • Halder AK, Misra AK, Chakrabarty PK (1991) Solubilization of inorganic phosphates by Bradyrhizobium. Indian J Exp Biol 29:28–31

    CAS  Google Scholar 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17

    Article  Google Scholar 

  • Hass D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas sp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  Google Scholar 

  • Hayat R (2005) Sustainable legume cereal cropping system through management of biological nitrogen fixation in Pothwar. PhD Dissertation. PMAS Arid Agriculture University, Rawalpindi, Pakistan

  • Hayat R, Ali S (2004) Potential of summer legumes to fix nitrogen and benefit wheat crop under rainfed condition. J Agronomy 3:273–281.

    Google Scholar 

  • Hayat R, Ali S (2010) Nitrogen fixation of legumes and yield of wheat under legumes-wheat rotation in Pothwar. Pak J Bot 42(3): in press

  • Hayat R, Ali S, Siddique MT, Chatha TH (2008a) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pak J Bot 40(2):711–722

    CAS  Google Scholar 

  • Hayat R, Ali S, Ijaz SS, Chatha TH, Siddique MT (2008b) Estimation of N2-fixation of mung bean and mash bean through xylem uriede technique under rainfed conditions. Pak J Bot 40(2):723–734

    CAS  Google Scholar 

  • Hegazi NA, Faye M, Amin G, Hamza MA, Abbas M, Youssef H, Monib M (1998) Diazotrophs assoiciated with non-legumes grown in sandy soil. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kulwer, Dordrecht, pp 209–222

    Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth promoting rhizobacteria on bell pepper production and green peach aphid infestation in New York. Crop Prot 27:996–1002

    Article  Google Scholar 

  • Herridge DF, Marcellos H, Felton WL, Turner GL, Peoples MB (1993) Legume N2 fixation an efficient source of N for cereal production, Nuclear methods in soil-plant aspects of sustainable agriculture (Proc. Sem. Colombo, 1993). IAEA, Vienna

    Google Scholar 

  • Hesselmann RPX, Werlen C, Hahn D, van der Meer JR, Zehnder AJB (1999) Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22:454–465

    PubMed  CAS  Google Scholar 

  • Hilali A, Przrost D, Broughton WJ, Antoun A (2000) Potential use of Rhizobium leguminosarum by trifoli as plant growth promoting rhizobacteria with wheat. In: Abstract of the I7th North American conference on symbiotic nitrogen fixation. Laval University, Quebec, Canada, pp 23-28

  • Hilali A, Prevost D, Broughton WJ, Anloun H (2001) Effects of in-oculation avec des souches de Rhizobium leguminosarum biovar trifolii sur la croissance du ble dans deux sols du Maroc. Can J Microbiol 47:590–593

    Article  PubMed  CAS  Google Scholar 

  • Hoflich G (2000) Colonization and growth promotion of non-legumes by Rhizobium bacteria. Micobial biosystems: new prontiers. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Soc, Microbial Ecol., Halifax, Canada, pp 827-830

  • Hoflich G, Wiehe W, Kohn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experienca 50:897–905

    Article  Google Scholar 

  • Hoflich G, Wiehe W, Hecht-Buchholz CC (1995) Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150:139–147

    Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  PubMed  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • Hynes RK, Leung GCY, Hirkala DLM, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can J Microb 54:248–258

    Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    PubMed  CAS  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Iruthayaraj MR (1981) Let Azotobacter supply nitrogen to cotton. Intensive Agric 19-23

  • Islam N, Rao CVS, Kennedy IR (2002) Facilitating a N2-fixing symbiosis between diazotrophs and wheat. In: Kennedy IR, Choudhury ATMA (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 84–93

    Google Scholar 

  • Jackson MB (1991) Ethylene in root growth and development. In: Matoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 159–181

    Google Scholar 

  • Jadhav RS, Thaker NV, Desai A (1994) Involvement of the siderophore of cowpea Rhizobium in the iron nutrition of the peanut. World J Microbiol Biotechnol 10:360–361

    Article  CAS  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los Banõs, pp 119–140

    Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Article  Google Scholar 

  • Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6):510–515

    PubMed  CAS  Google Scholar 

  • Kajar B, Jensen J (1995) The inheritance of nitrogen and phosphorous content in barley analyzed by genetic markers. Heriditas 123:109–119

    Article  Google Scholar 

  • Kanungo PK, Panda D, Adhya TK, Ramakrishnan B, Rao VR (1997) Nitrogenase activity and nitrogen fixing bacteria associated with rhizosphere of rice cultivars. J Sci Food Agric 73:485–488

    Article  CAS  Google Scholar 

  • Keating JDH, Chapmanian N, Saxena MC (1998) Effect of improved management of legumes in a legume-cereal rotation on field estimates of crop nitrogen uptake and symbiotic nitrogen fixation in northern Syria. J Agric Sci 110:651–659

    Article  Google Scholar 

  • Kempster VN, Scott ES, Davies KA (2002) Evidance for systematic, cross-resistance in white clover (Trifolium repens) and annual medic (Medicago truncatula var truncatula) induced by biological and chemical agents. Biocontrol Sci Technol 12(5):615–623

    Article  Google Scholar 

  • Kennedy IR, Tchan Y (1992) Biological nitrogen fixation in no leguminous field crops: recent advances. Plant Soil 141:93–118

    Article  CAS  Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457

    Article  CAS  Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Glichrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azosirillun and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury AIMA, KecSkes ML (2004) Non-Symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Boil Biochem 3 6(8):1229-1244

    Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    PubMed  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2001) Factor affecting auxin biosynthesis by wheat and rice rhizobacteria. Pak J Soil Sci 21:11–18

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2003) Growth and yield response of wheat to inoculation with auxin producing plant growth promoting rhizobacteria. Pak J Bot 35:483–498

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving groth and yield of wheat. J Appl Microbiol 96:473–480

    Article  PubMed  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998) Cloning of the thermo stable phytase gene (phy) from Bacillus sp. DS11 and its over expression in Escherichia coli. FEMS Microbiol Lett 162:185–191

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology. Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW (1994) Plant growth promoting rhizobacteria. In: Okon Y (ed) Azospirillum/Plant associations. CRC Press, Boca Raton, pp 137–166

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. Proceedings of the Fourth International Conference on Plant Pathogen Bacteria, vol. 2. INRA, pp 879–882

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kokalis-Burelle N (2003) Effects of transplant type and soil fumigant on growth and yield of strawberry in Florida. Plant Soil 256:273–280

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Martinez-Ochoa N, Rodríguez-Kábana R, Kloepper JW (2002a) Development of multi-component transplant mixes for suppression of Meloidogyne incognita on tomato (Lycopersicon esculentum). J Nematol 34:362–369

    PubMed  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002b) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Reddy MS, Kloepper JW (2003) Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: effects on disease and nematode resistance. Hortic Technol 13:476–482

    Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31(1–2):91–100

    Article  Google Scholar 

  • Kolb W, Martin P (1985) Response of plant roots to inoculation with Azospirillum brasilense and to application of indoleacetic acid. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 215–221

    Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    Article  CAS  Google Scholar 

  • Ladha JK, Baraquio WL, Watanabe I (1982) Immunological techniques to identify Azospirillum associated with rice. Can J Microbiol 28:478–485

    Article  PubMed  CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334

    Article  CAS  Google Scholar 

  • Lee S, Pierson B, Kennedy C (2002) Genetics and biochemistry of nitrogen fixation and other factors beneficial to host plant growth in diazotrophic endophytes. In: Vanderleyden J (ed) Proceedings of the ninth international symposium on nitrogen fixation with nonlegumes. Katholique Universiteit, Leuven, pp 41–42

    Google Scholar 

  • Leelahawonge C, Nuntagij A, Teaumroong N, Boonkerd N, Pongsilp N (2010) Characterization of root-nodule bacteria isolated from the medicinal legume Indigofera tinctoria. Ann Microbiol 60:65–74

    Article  CAS  Google Scholar 

  • Lhuissier FGP, de Ruijter NCA, Sieberer BJ, Esseling JJ, Emons AMC (2001) Time course of cell biological events evoked in legume root hairs by Rhizobium Nod factors: state of the art. Ann Bot 87:289–302

    Article  CAS  Google Scholar 

  • Li J, Ovakin DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutatnt of Entreobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    Article  PubMed  CAS  Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinase regulating rhizobial nod factor-induced infection. Science 302:630–633

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microb Interact 4:5–13

    CAS  Google Scholar 

  • Lucas GJA, Probanza A, Ramos B, Colon Flores JJ, Gutierrez Mañero FJ (2004a) Effect of plant growth promoting rhizobacteria (PGPRs) on biological nitrogen fixation, nodulation and growth of Lupinus albus I. cv. Multolupa. Eng Life Sci 7:1–77

    Google Scholar 

  • Lucas GJA, Probanza A, Ramos B, Palomino MR, Gutierrez Mañero FJ (2004b) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176

    Article  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (2000) Endophytic Rhizobia in barley and canola in rotation with field peas. In: Book of abstracts, 17th North American conference on symbiotic nitrogen fixation, 23-28 July 2000, 80. University of Laval, Quebec, Canada, p 51

  • Lynch JM (1983) Soil biotechnology. Blackwell, Oxford

    Google Scholar 

  • Lynch JM (1990) Beneficial interactions between miroorganisms and roots. Biotechnol Adv 8:335–346

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Mirza MS, Hassan U, Mehnaz S, Rasul G, Haurat J, Bauy R, Normanel P (2002) The role of plant associated beneficial bacteria in rice-wheat Cropping System. In: Kennedy IR, Chaudhry ATMA (eds) Biofertilisers in action. Rural industries research and development Corporation, Canberra, pp 73–83

    Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Romero E, Gutierrez-Zamora ML, Estrada P, Caballero-Mellado J, Hernandez-Lucas I (2000) Natural endophytic association between Rhizobium Etli and maize. In: Book of abstracts, 17th North American conference on symbiotic nitrogen fixation, 23-28 July 2000. University of Laval, Quebec, Canada, p 51

  • Martinez-Toledo MV, Rodelas B, Salmeron V, Pozo C, Gonzalez-Lopez J (1996) Production of pantothenic acid and thiamine by Azotobacter vinelandii in a chemically defined medium and a dialysed soil medium. Biol Fertil Soils 22:131–135

    Article  CAS  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    CAS  Google Scholar 

  • McGrath JW, Wisdom GB, McMullan G, Lrakin MJ, Quinn JP (1995) The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleaving enzyme from Pseudomonas fluorescens 23F. Eur J Biochem 234:225–230

    Article  PubMed  CAS  Google Scholar 

  • McGrath JW, Hammerschmidt F, Quinn JP (1998) Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64:356–358

    PubMed  CAS  Google Scholar 

  • Mclnroy JA, Kloepper JW (1995) Survey of indigenous endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Article  Google Scholar 

  • Middledrop PJM, Briglia M, Salkinoja-Salonen M (1990) Biodegradation of pentachlorophenol in natural polluted soil by inoculated Rhodococcus chlorophenolicus. Microb Ecol 20:123–139

    Article  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, David DD, David DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Springer, Berlin

  • Milton HSJ (2007) Beneficial bacteria and bioremediation. Water Air Soil Pollut 184:1–3

    Article  CAS  Google Scholar 

  • Mirza MS, Rasul G, Mehnaz S, Ladha JK, So RB, Ali S, Malik KA (2000) Beneficial effects of inoculated nitrogen-fixing bacteria on rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los Banõs, pp 191–204

    Google Scholar 

  • Muratova A Yu, Turkovskaya OV, Antonyuk LP, Makarov OE, Pozdnyakova LI, Ignatov VV (2005) Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology 74:210–215

  • Murphy JF, Zender GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Murray JD, Bogumil JK, Shusei SH, Satoshi T, Lisa A, Krzysztof S (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315(5808):101–104

    Article  PubMed  CAS  Google Scholar 

  • Muthukumarasamy R, Revathi G, Lakshminarasimhan C (1999) Diazotrophic associations in sugar cane cultivation in South India. Trop Agric 76:171–178

    Google Scholar 

  • Nakata PA (2002) The generation of a transposon-mutagenized Burkholderia glumae library to isolate novel mutants. Plant Sci 162:267–271

    Article  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  PubMed  CAS  Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1990a) Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the growth of Raphanus sativus. Plant Soil 127:147–156

    Article  CAS  Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1990b) Microbial production of cytokinins. In: Bollag JM, Stotzky G (eds) Soil biochem, vol 6. Dekker, New York, pp 191–248

    Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1991) Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the vegetative growth of Zea mays. Plant Soil 135:213–221

    Article  CAS  Google Scholar 

  • Noling JW, Gilreath JP (2001) Methyl bromide, progress and problems: identifying alternatives to methyl bromide, vol. II. Citrus and Veg. Mag., IFAS, University of Florida

  • O´Sullivan DJ, O´Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Google Scholar 

  • Ohr HD, Sims JJ, Grech NM, Becker JO, McGiffen ME Jr (1996) Methyl iodide, an ozone-safe alternative to methyl bromide as a soil fumigant. Plant Dis 80:27–32

    Article  Google Scholar 

  • Ohtake H, Wu H, Imazu K, Ambe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Res Conserv Recycl 18:125–134

    Article  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years world-wide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial innoculant for improving crop yields. Biotechnol Adv 13(3):415–424

    Article  PubMed  CAS  Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium germinearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Kumar S (1989) Potential of Azotobacters and Azospirilla as biofertilizers for upland agriculture: a review. J Sci Ind Res 48:134–144

    Google Scholar 

  • Panwar JDS, Singh O (2000) Response of Azospirillum and Bacillus on growth and yield of wheat under field conditions. Indian J Plant Physiol 5:108–110

    Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria which induces systemic resistance in tobacco against Pseudomonas syringae pv. Tabaco Biol Cont 18:2–9

    Article  CAS  Google Scholar 

  • Patil PL, Patil SP (1984) Uptake of nitrogen by cotton inoculated with Azotobacter. J Maharashtra Agric Uni 9(17):1–172

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Paynel F, Murray PJ, Cliquet B (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229:235–243

    Article  CAS  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martínez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Pereira JAR, Cavalcante VA, Baldani JI, Döbereiner J (1988) Field inoculation of sorghum and rice with Azospirillum sp and Herbaspirillum seropedicae. Plant Soil 110:269–274

    Article  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429(77):1–776

    Google Scholar 

  • Plessner O, Klapach T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59:1688–1690

    PubMed  CAS  Google Scholar 

  • Primrose SB (1979) Ethylene and agriculture: the role of the microbe. J Appl Bacteriol 46:1–25

    CAS  Google Scholar 

  • Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22:579–588

    Article  Google Scholar 

  • Rao DLN (2001) BNF research progress 1996-2000: all India coordinated research project on biological nitrogen fixation. IISS, Bhopal

    Google Scholar 

  • Reid M (1987) Ethylene in plant growth, development and senescence. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Boston, pp 257–279

    Google Scholar 

  • Reilly TJ, Baron GS, Nano F, Kuhlenschmidt MS (1996) Characterization and sequencing of a respiratory burst inhibiting acid phosphatase from Francisella tularensis. J Biol Chem 271:10973–10983

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, DeLey J (1993) Azoarcus gen. nov., nitrogen fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth) and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584

    Article  Google Scholar 

  • Reinhold-Hurek B, Egener T, Hurek T, Martin D, Sarkar A, Zhang L, Miche L (2002) Regulation of nitrogen fixation and assimilation of Azoarcus sp. BH72 new approaches to study biodiversity of grass endophytes. In: Vanderleyden J (ed) Proceedings of the nineth international symposium on nitrogen fixation with non-legumes. Katholique Universideit Leuven, Belgium, p 48

    Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döberener J (2000) Biological dinitrogen fixation in the graminae and palm trees. Crit Rev Plant Sci 19:227–247

    Article  CAS  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Gonzalez LJ (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43(509–5):16

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodríguez H, Han Y, Lei XG (1999) Cloning, sequencing and expression of an Escherichia. coli acid phopshatase/phytase gene (app A2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123

    Article  PubMed  Google Scholar 

  • Rodríguez H, Rossolini GM, Gonzalez T, Jiping L, Glick BR (2000) Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Curr Microbiol 40:362–366

    Article  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan T (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Roesti D, Guar R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat field. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Roper MM, Ladha JK (1995) Biological N2-fixation by heterotrophic and phototrophic bacteria in association with straw. Plant Soil 174:211–224

    Article  CAS  Google Scholar 

  • Rossolini GM, Shipa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial non-specific acid phosphatases: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced cropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134(3–4):312–319

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Google Scholar 

  • Şahin F, Çakmakçi R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Saleh S, Huang XD, Greenberg BM, Glick BR (2004) Phytoremediation of persistent organic contaminants in the environment. In: Singh A, Ward O (eds) Soil biology, vol. 1. Applied bioremediation and phytoremediation. Springer, Berlin, pp 115–134

    Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaf folder pest. J Appl Entomol 132(6):469–479

    Article  Google Scholar 

  • Sasikala C, Ramana CV (1995) Biotechnological potentials of anoxygenic phototrophic bacteria. I. Production of single-cell protein, vitamins, ubiquinones, hormones, and enzymes and use in waste treatment. Adv Appl Microbiol 41:173–226

    Article  PubMed  CAS  Google Scholar 

  • Saubidet MI, Fatta N, Barneix AJ (2000) The effects of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245(2):15–222

    Google Scholar 

  • Schippers B, Bakker AW, Baker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schippers B, Scheffer RJ, Lugtenberg JJ, Weisbek PJ (1995) Biocoating of seed with plant growth promoting rhizobacteria to improve plant establishment. Outlook Agric 24:179–185

    Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Hoflich G, Hartman A (1997) Root colonization of different plants by plant growth-promoting Rhizobium leguminosarum bv trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    PubMed  CAS  Google Scholar 

  • Séguin A, Lalonde M (1989) Detection of pectolytic activity and pel homologous sequences in Frankia. Plant Soil 118:221–229

    Article  Google Scholar 

  • Serrano A, Mateos MI, Losada M (1993) Differential regulation by trophic conditions of phosphorylating and nonphosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenases in Chlorella fusca. Biochem Biophys Res Commun 193:1348–1356

    Article  Google Scholar 

  • Shah Z, Shah SH, Peoples MB, Schwenke GD, Hrridge DF (2003) Crop residue and fiertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fetility. Field Crops Res 83:1–11

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006a) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  PubMed  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006b) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Shankariah C, Hunsigi G (2001) Field responses of sugarcane to associative N2 fixers and P solubilishers. In: Hogarth DM (ed) Proceedings of the 24th international society of sugarcane Technologists Congress, 17-21 September 2001. The Australian Society of Sugercane Technologists, Brisbane, pp 40–45

    Google Scholar 

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol adv 23:501–513

    Article  PubMed  CAS  Google Scholar 

  • Shiferaw B, Bantilan MCS, Serraj R (2004) Harnessing the potential of BNF for poor farmers: technological policy and institutional constraints and research need. In: Serraj R (ed) Symbiotic nitrogen fixation; prospects for enhanced application in tropical agriculture. Oxford & IBH, New Delhi, p 3

    Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774

    Article  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Shaukat SS (2001) Use of rhizobacteria in the control of root rot-root knot disease complex of mung bean. J Phytopathol 149:337–346

    Article  Google Scholar 

  • Sierra S, Rodelas B, Martinez-Toledo MV, Pozo C, Gonzalez-Lopez J (1999) Production of B-group vitamins by two Rhizobium strains in chemically defined media. J Appl Microbiol 86:851–858

    Article  CAS  Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alpha-glycerphosphate. Arch Biochem Biophys 349:27–35

    Article  Google Scholar 

  • Snapp SS, Aggarwal VD, Chirwa RM (1998) Note on phosphorus and genotype enhancement of biological nitrogen fixation and productivity of maize/bean intercrops in Malawi. Field Crops Res 58:205–212

    Article  Google Scholar 

  • Soliman S, Seeda MA, Aly SSM, Gadalla AM (1995) Nitrogen fixation by wheat plants as affected by nitrogen fertilizer levels and nonsymbiotic bacteria. Egypt J Soil Sci 35:401–413

    Google Scholar 

  • Spencer D, James EK, Ellis GJ, Shaw JE, Sprent JI (1994) Interactions between Rhizobia and potato tissue. J Exp Bot 45:1475–1482

    Article  CAS  Google Scholar 

  • Stajner D, Gasaić O, Matković B, Varga SZI (1995) Metolachlor effect on antioxidants enzyme activities and pigments content in seeds and young leaves of wheat (Triticum aestivum L.). Agr Med 125:267–273

    Google Scholar 

  • Stajner D, Kevreaan S, Gasaić O, Mimica-Dudić N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Google Scholar 

  • Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant defence in arthropode management programs. Arch Insect Biochem Physiol 51(4):222–235

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Novak J (2000) Bacterial endophytes: potential role in developing sustainable system of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sutton JC, Peng G (1993) Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83:615–621

    Article  Google Scholar 

  • Terouchi N, Syono K (1990) Rhizobium attachment and curling in asparagus, rice, and oat plants. Plant Cell Physiol 31:119–127

    Google Scholar 

  • Thakuria D, Taleekdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86(7):978–985

    Google Scholar 

  • Thaller MC, Berlutti F, Schippa S, Lombardi G, Rossolini GM (1994) Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology 140:1341–1350

    Article  PubMed  CAS  Google Scholar 

  • Thaller MC, Berlutti F, Schippa S, Iori P, Passariello C, Rossolini GM (1995a) Heterogeneous patterns of acid phosphatases containing low-molecular-mass Polipeptides in members of the family Enterobacteriaceae. Int J Syst Bacteriol 4:255–261

    Article  Google Scholar 

  • Thaller MC, Lombardi G, Berlutti F, Schippa S, Rossolini GM (1995b) Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterial acid phosphatase encoding genes. Microbiology 140:147–151

    Google Scholar 

  • Tien TM, Diem HG, Gaskins MH, Hubbell DH (1981) Polygaracturonic acid transeliminase production by Azospirillum species. Can J Microbiol 27:426–431

    Article  PubMed  CAS  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1990) Soil fertility and fertilizers, 4th edn. Macmillan, New York

    Google Scholar 

  • Tran Vân V, Berge O, Ke SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Article  Google Scholar 

  • Tye AJ, Siu FK, Leung TY, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis. Appl Microbiol Biotechnol 59:190–197

    Article  PubMed  CAS  Google Scholar 

  • Umali-Garcia M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39(1):219–226

    PubMed  CAS  Google Scholar 

  • Valverde F, Losada M, Serrano A (1999) Engineering a central metabolic pathway: glycolysis with no net phosphorylation in an Escherichia coli gap mutant complemented with a plant Gap N gene. FEBS Lett 449:153–158

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Bakker P, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Rhijn P, Fujishige NA, Lim PO, Hirsch AM (2001) Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum bivor viciae. Plant Physiol 126:133–144

    Article  PubMed  Google Scholar 

  • Van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    Google Scholar 

  • Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  PubMed  Google Scholar 

  • Venkateswarlu B, Hari K, Katyl JC (1997) Influence of soil and crop factors on the native rhizobia populations in soils under dry land farming. Appl Soil Ecol 7:1–10

    Google Scholar 

  • Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainino L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine MC, Cordier C, Alabouvette C, Gianinazzi S (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258

    Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005) Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn Concentrations. Microb Ecol 49:416–442

    Article  PubMed  CAS  Google Scholar 

  • Wachowska U, Majchrzak B, Borawska M, Karpinska Z (2004) Biological control of winter wheat pathogens by bacteria. Acta fytotech zootech, Vol. 7, 2004, Special Number, Proceedings of the XVI. Slovak and Czech Plant Protection Conference organized at Slovak Agricultural University in Nitra, Slovakia

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  PubMed  CAS  Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor CA, O’Callaghan KJ, Kothari SL, Davey MR, Denarie J, Cocking EC (1997) Interactions of Rhizobia with rice and wheat. Plant Soil 194:115–122

    Article  CAS  Google Scholar 

  • Wiehe W, Holfich G (1995) Survival of plant growth promoting rhizosphere bacteria in rhizosphere of different crops and migration to non-inoculated plants under field conditions in north-east Germany. Microbiol Res 150:201–206

    Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yanni YG, El-Fattah FKA (1999) Towards integrated biofertilization management with free living and associative dinitrogen fixers for enhancing rice performance in the Nile delta. Symbiosis 27:319–331

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Ninke K, Philip-Hollingsworth S, Mateos PF, Velasquez E, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Zafar-ul-Hye M, Zahir ZA, Shahzad SM, Irshad U, Arshad M (2007) Isolation and screening of Rhizobia for improving growth and nodulation of lentil (Lens culinaris Medic) seedlings under axenic conditions. Soil Environ 26(1):81–91

    Google Scholar 

  • Zahir AZ, Arshad M, Frankenberger WT Jr (2004) Plant growth promoting rhizobacteria: application and perspectives in Agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zahir ZA, Abbas SA, Khalid M, Arshad M (2000) Substrate dependent microbially derived plant hormones for improving growth of maize seedlings. Pak J Biol Sci 3:289–291

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2008) Significance of Bacillus subtilis strains SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica Juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

  • Zavalin AA, Kandaurova TM, Vinogradova LV (1998) Influence of nitrogen fixing microorganisms on the nutrition and productivity of spring wheat, and on the characteristics of photosynthesis of different varieties of spring wheat. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, pp 413–414

    Google Scholar 

  • Zhang S, Moyne AL, Reddy MS, Kloepp JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Google Scholar 

  • Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Zhuang XL, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifat Hayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, R., Ali, S., Amara, U. et al. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60, 579–598 (2010). https://doi.org/10.1007/s13213-010-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0117-1

Keywords

Navigation