Skip to main content
Log in

Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Nanomaterials have several advantages in detecting several biomaterials and in enhancing signals and their inherent effects. Thus, they have been widely applied in the biomedical fields such as biosensor and cancer therapeutics. Recently, the development of microfluidic technology has led to superior biological analysis systems to detect biomarkers related to diseases or serve as in vitro drug screening platform. In a microfluidic device, samples could be analyzed more accurately, rapidly and simply. In addition, it is possible to culture the cells in these microfluidic devices, therefore making the in situ analysis of secretomes easy. Nanomaterials can be easily applied in the microfluidic channels as capturing and signaling materials in order to improve the sensing or therapeutic property. In particular, nanomaterial integrated microfluidic cell culture model can replace in vivo disease models for nanotherapeutics screening. In this review, nanomaterial-based sensing systems, which include diverse organic and inorganic nanoparticles, are introduced with specific examples, including microfluidics integrated systems. Moreover, microfluidics derived nanomaterial analytic systems as in vitro 2 or 3-dimensional (2D or 3D) cell culture platform will be presented. We also highlight the future perspectives of the microfluidic-driven system as highly sensitive total analysis system with functional nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. You, C.-C. et al. Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol. 2, 318–323 (2007).

    Article  CAS  Google Scholar 

  2. Miranda, O.R. et al. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J. Am. Chem. Soc. 133, 9650–9653 (2011).

    Article  CAS  Google Scholar 

  3. Jain, P.K., Huang, X.H., El-Sayed, I.H. & El-Sayed, M.A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  4. Saha, K., Agasti, S.S., Kim, C., Li, X. & Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).

    Article  CAS  Google Scholar 

  5. Ghosh, P., Han, G., De, M., Kim, C.K. & Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug. Deliv. Rev. 60, 1307–1315 (2008).

    Article  CAS  Google Scholar 

  6. Maier, S.A. et al. Plasmonics -a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    Article  CAS  Google Scholar 

  7. Liu, H.L. et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl. Acad. Sci. USA 107, 15205–15210 (2010).

    Article  CAS  Google Scholar 

  8. Sperling, R.A. & Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A. Math. Phys. Eng. Sci. 368, 1333–1383 (2010).

    Article  CAS  Google Scholar 

  9. Crooks, R.M., Zhao, M., Sun, L., Chechik, V. & Yeung, L.K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    Article  CAS  Google Scholar 

  10. Choi, J.H. et al. Dye-doped silica nanoparticle with HIV-1 TAT peptide for bioimaging. J. Biomed. Nanotechnol. 9, 291–294 (2013).

    Article  CAS  Google Scholar 

  11. Liu, Y.Y., Miyoshi, H. & Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).

    Article  CAS  Google Scholar 

  12. Janib, S.M., Moses, A.S. & MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010).

    Article  CAS  Google Scholar 

  13. Li, Z.H. et al. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Anal. Chem. 82, 7008–7014 (2010).

    Article  CAS  Google Scholar 

  14. Wang, K. et al. A highly sensitive and rapid organophosphate biosensor based on enhancement of CdSdecorated graphene nanocomposite. Anal. Chim. Acta. 695, 84–88 (2011).

    Article  CAS  Google Scholar 

  15. Ackerson, C.J., Jadzinsky, P.D., Jensen, G.J. & Kornberg, R.D. Rigid, specific, and discrete gold nanoparticle/ antibody conjugates. J. Am. Chem. Soc. 128, 2635–2640 (2006).

    Article  CAS  Google Scholar 

  16. Yan, J.L. et al. Dye-doped nanoparticles for bioanalysis. Nano Today 2, 44–50 (2007).

    Article  Google Scholar 

  17. Kumar, R., Maitra, A.N., Patanjali, P.K. & Sharma, P. Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials 26, 6743–6753 (2005).

    Article  CAS  Google Scholar 

  18. Cheng, Z., Al Zaki, A., Hui, J.Z., Muzykantov, V.R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  CAS  Google Scholar 

  19. Chen, J., Ji, X., Tinnefeld, P. & He, Z. Multifunctional Dumbbell-Shaped DNA-Templated Selective Formation of Fluorescent Silver Nanoclusters or Copper Nanoparticles for Sensitive Detection of Biomolecules. ACS Appl. Mater. Interfaces 8, 1786–1794 (2016).

    Article  CAS  Google Scholar 

  20. Liu, J. et al. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 44–56 (2016).

    Article  CAS  Google Scholar 

  21. Xu, X., Ho, W., Zhang, X., Bertrand, N. & Farokhzad, O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21, 223–232 (2015).

    Article  CAS  Google Scholar 

  22. Kim, C.S. et al. Co-Delivery of Protein and Small Molecule Therapeutics Using Nanoparticle-Stabilized Nanocapsules. Bioconjugate Chem. 26, 950–954 (2015).

    Article  CAS  Google Scholar 

  23. Rosalia, R.A. et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40, 88–97 (2015).

  24. Gao, H. et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33, 5115–5123 (2012).

    Article  CAS  Google Scholar 

  25. Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  Google Scholar 

  26. Karagiannis, G.S. et al. Cancer-Associated Fibroblasts Drive the Progression of Metastasis through both Paracrine and Mechanical Pressure on Cancer Tissue. Mol. Cancer Res. 10, 1403–1418 (2012).

    Article  CAS  Google Scholar 

  27. Xu, S., Olenyuk, B.Z., Okamoto, C.T. & Hamm-Alvarez, S.F. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 65, 121–138 (2013).

    Article  CAS  Google Scholar 

  28. Lee, J.H. et al. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew. Chem. Int. Ed. 125, 4480–4484 (2013).

    Article  Google Scholar 

  29. Lee, P. et al. Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation. Int. J. Nanomedicine 7, 731–737 (2012).

    CAS  Google Scholar 

  30. Corrigan, O.I. & Li, X. Quantifying drug release from PLGA nanoparticulates. Eur. J. Pharm. Sci. 37, 477–485 (2009).

    Article  CAS  Google Scholar 

  31. Zheng, M. et al. Single-step assembly of DOX/ICG loaded lipid—polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7, 2056–2067 (2013).

    Article  CAS  Google Scholar 

  32. Pissuwan, D., Niidome, T. & Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011).

    Article  CAS  Google Scholar 

  33. Wang, M. & Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 62, 90–99 (2010).

    Article  CAS  Google Scholar 

  34. Ulbrich, K., Hekmatara, T., Herbert, E. & Kreuter, J. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the bloodbrain barrier (BBB). Eur. J. Pharm. Biopharm. 71, 251–256 (2009).

    Article  CAS  Google Scholar 

  35. Peluffo, H. et al. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol. Adv. 33, 277–287 (2015).

    Article  CAS  Google Scholar 

  36. Valencia, P.M. et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 7, 10671–10680 (2013).

    Article  CAS  Google Scholar 

  37. Valencia, P.M., Farokhzad, O.C., Karnik, R. & Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7, 623–629 (2012).

    Article  CAS  Google Scholar 

  38. Sackmann, E.K., Fulton, A.L. & Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  Google Scholar 

  39. Kuo, J.N. & Zhan, Y.H. Microfluidic chip for rapid and automatic extraction of plasma from whole human blood. Microsyst. Technol. 21, 255–261 (2015).

    Article  CAS  Google Scholar 

  40. Roy, K., Mao, H.Q., Huang, S.K. & Leong, K.W. Oral gene delivery with chitosan—DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5, 387–391 (1999).

    Article  CAS  Google Scholar 

  41. Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 108, 2426–2431 (2011).

    Article  CAS  Google Scholar 

  42. Arami, H., Khandhar, A., Liggitt, D. & Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015).

    Article  CAS  Google Scholar 

  43. Mestas, J. & Hughes, C.C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  Google Scholar 

  44. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  Google Scholar 

  45. Li, Y. et al. Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles. Interface Focus 6, 20150086 (2016).

    Article  Google Scholar 

  46. Cao, Q.L., Han, X.T. & Li, L. Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J. Phys. D. Appl. Phys. 45, 465001 (2012).

    Article  CAS  Google Scholar 

  47. Kwak, B., Ozcelikkale, A., Shin, C.S., Park, K. & Han, B. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-onchip. J. Control. Release 194, 157–167 (2014).

    Article  CAS  Google Scholar 

  48. Polavarapu, L., Perez-Juste, J., Xu, Q.H. & Liz-Marzan, L.M. Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J. Mater. Chem. C 2, 7460–7476 (2014).

    Article  CAS  Google Scholar 

  49. Guo, L., Xu, Y., Ferhan, A.R., Chen, G. & Kim, D.H. Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J. Am. Chem. Soc. 135, 12338–12345 (2013).

    Article  CAS  Google Scholar 

  50. Thavanathan, J., Huang, N.M. & Thong, K.L. Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide. Biosens. Bioelectron. 55, 91–98 (2014).

    Article  CAS  Google Scholar 

  51. Li, Z. et al. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 134, 3322–3325 (2012).

    Article  CAS  Google Scholar 

  52. Ma, X.M. et al. Gold Nanorods as Colorful Chromogenic Substrates for Semiquantitative Detection of Nucleic Acids, Proteins, and Small Molecules with the Naked Eye. Anal. Chem. 88, 3227–3234 (2016).

    Article  CAS  Google Scholar 

  53. Dennis, A.M., Rhee, W.J., Sotto, D., Dublin, S.N. & Bao, G. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6, 2917–2924 (2012).

    Article  CAS  Google Scholar 

  54. Liu, J., Cheng, J. & Zhang, Y. Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosens. Bioelectron. 43, 252–256 (2013).

    Article  CAS  Google Scholar 

  55. Choi, J.H. et al. A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequencespecific peptide cleavage reaction. Biosens. Bioelectron. 49, 415–419 (2013).

    Article  CAS  Google Scholar 

  56. Shi, X.H. et al. Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchimica Acta 181, 1–22 (2014).

    Article  CAS  Google Scholar 

  57. Espina, V. et al. Protein microarray detection strategies: focus on direct detection technologies. J. Immunol. Methods 290, 121–133 (2004).

    Article  CAS  Google Scholar 

  58. Choi, J.H., Lim, Y.T. & Oh, B.K. Development of Colorimetric Enzyme-Ball for Signal Amplification of Enzyme-Linked Immunosorbent Assay. Sci. Adv. Mater. 6, 2572–2576 (2014).

    Article  CAS  Google Scholar 

  59. Choi, J.H., Koo, Y.K., Kim, B.R. & Oh, B.K. An Attomolar Detectable Colorimetric DNA Biosensor based on Enzyme Amplification Method. BioChip J. 3, 224–229 (2009).

    Google Scholar 

  60. Kim, H.-S. & Oh, B.-K. A rapid and sensitive immunoassay for detection of E. coli O157: H 7 using multienzyme -Au nanoparticle complex. BioChip J. 8, 1–7 (2014).

    Article  CAS  Google Scholar 

  61. Lafleur, J.P., Senkbeil, S., Jensen, T.G. & Kutter, J.P. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. Lab Chip 12, 4651–4656 (2012).

    Article  CAS  Google Scholar 

  62. Zhang, B. et al. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Research 6, 113–120 (2013).

    Article  CAS  Google Scholar 

  63. Kuo, S.Y. et al. Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells. Anal. Chem. 87, 4765–4771 (2015).

    Article  CAS  Google Scholar 

  64. Huang, N.T. et al. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip 12, 4093–4101 (2012).

    Article  CAS  Google Scholar 

  65. Homola, J., Yee, S.S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensor Actuat. B-Chem. 54, 3–15 (1999).

    Article  CAS  Google Scholar 

  66. Willets, K.A. & van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  67. Choi, J.H., Lee, J.H., Oh, B.K. & Choi, J.W. Localized surface plasmon resonance-based label-free biosensor for highly sensitive detection of dopamine. J. Nanosci. Nanotechnol. 14, 5658–5661 (2014).

    Article  CAS  Google Scholar 

  68. Choi, Y., Choi, J.-H., Liu, L., Oh, B.-K. & Park, S. Optical sensitivity comparison of multiblock gold-silver nanorods toward biomolecule detection: quadrupole surface plasmonic detection of dopamine. Chem. Mater. 25, 919–926 (2013).

    Article  CAS  Google Scholar 

  69. Huang, C. et al. Localized surface plasmon resonance biosensor integrated with microfluidic chip. Biomed. Microdevices 11, 893–901 (2009).

    Article  CAS  Google Scholar 

  70. Escobedo, C. et al. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst 138, 1450–1458 (2013).

    Article  CAS  Google Scholar 

  71. Oh, B.R. et al. Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood. ACS Nano 8, 2667–2676 (2014).

    Article  CAS  Google Scholar 

  72. Chen, P.Y. et al. Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS Nano 9, 4173–4181 (2015).

    Article  CAS  Google Scholar 

  73. Stiles, P.L., Dieringer, J.A., Shah, N.C. & van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. (Palo Alto Calif) 1, 601–626 (2008).

    Article  CAS  Google Scholar 

  74. El-Said, W.A. & Choi, J.W. In-situ detection of neurotransmitter release from PC12 cells using Surface Enhanced Raman Spectroscopy. Biotechnol. Bioprocess Eng. 19, 1069–1076 (2014).

    Article  CAS  Google Scholar 

  75. Yin, P.T., Kim, T.H., Choi, J.W. & Lee, K.B. Prospects for graphene-nanoparticle-based hybrid sensors. Phys. Chem. Chem. Phys. 15, 12785–12799 (2013).

    Article  CAS  Google Scholar 

  76. Park, T. et al. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5, 437–442 (2005).

    Article  CAS  Google Scholar 

  77. Sha, M.Y., Xu, H., Natan, M.J. & Cromer, R. Surfaceenhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J. Am. Chem. Soc. 130, 17214–17215 (2008).

    Article  CAS  Google Scholar 

  78. Zhang, X.L., Yin, H.B., Cooper, J.M. & Haswell, S.J. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal. Bioanal. Chem. 390, 833–840 (2008).

    Article  CAS  Google Scholar 

  79. El-Said, W.A., Kim, T.H., Chung, Y.H. & Choi, J.W. Fabrication of new single cell chip to monitor intracellular and extracellular redox state based on spectroelectrochemical method. Biomaterials 40, 80–87 (2015).

    Article  CAS  Google Scholar 

  80. Zhai, D. et al. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540–3546 (2013).

    Article  CAS  Google Scholar 

  81. Wang, L. et al. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles. ACS Appl. Mater. Interfaces 7, 18441–18449 (2015).

    Article  CAS  Google Scholar 

  82. Liu, Y., Kwa, T. & Revzin, A. Simultaneous detection of cell-secreted TNF-alpha, and IFN-gamma using micropatterned aptamer-modified electrodes. Biomaterials 33, 7347–7355 (2012).

    Article  CAS  Google Scholar 

  83. Mir, M., Homs, A. & Samitier, J. Integrated electrochemical DNA biosensors for lab-on-a-chip devices. Electrophoresis 30, 3386–3397 (2009).

    Article  CAS  Google Scholar 

  84. Picher, M.M. et al. Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-achip. Lab Chip 13, 1780–1789 (2013).

    Article  CAS  Google Scholar 

  85. Ölcer, Z. et al. Microfluidics and nanoparticles based amperometric biosensor for the detection of cyanobacteria (Planktothrix agardhii NIVA-CYA 116)DNA. Biosens. Bioelectron. 70, 426–432 (2015).

    Article  CAS  Google Scholar 

  86. Raiteri, R., Grattarola, M., Butt, H.J. & Skladal, P. Micromechanical cantilever-based biosensors. Sensor Actuat. B-Chem. 79, 115–126 (2001).

    Article  CAS  Google Scholar 

  87. Xu, T. et al. Real-time enzyme-digesting identification of double-strand DNA in a resonance-cantilever embedded micro-chamber. Lab Chip 14, 1206–1214 (2014).

    Article  CAS  Google Scholar 

  88. Zhi, X. et al. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens. Bioelectron. 54, 372–377 (2014).

    Article  CAS  Google Scholar 

  89. Lian, J. et al. A fully automated in vitro diagnostic system based on magnetic tunnel junction arrays and superparamagnetic particles. J. Appl. Phys. 111, 07B315 (2012).

    Article  CAS  Google Scholar 

  90. Davis, M.E., Chen, Z.G. & Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  91. Storm, G., Belliot, S.O., Daemen, T. & Lasic, D.D. Surface Modification of Nanoparticles to Oppose Uptake by the Mononuclear Phagocyte System. Adv. Drug Deliv. Rev. 17, 31–48 (1995).

    Article  CAS  Google Scholar 

  92. Gupta, A.K. & Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobioscience 3, 66–73 (2004).

    Article  Google Scholar 

  93. Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N. & Couvreur, P. Design, functionalization strategies and biomedical applications of targeted biodegradable/ biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42, 1147–1235 (2013).

    Article  CAS  Google Scholar 

  94. Liang, R., Wei, M., Evans, D.G. & Duan, X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. (Camb) 50, 14071–14081 (2014).

    Article  CAS  Google Scholar 

  95. Choi, J.H. & Oh, B.K. Development of two-component nanorod complex for dual-fluorescence imaging and siRNA delivery. J. Microbiol. Biotechnol. 24, 1291–1299 (2014).

    Article  CAS  Google Scholar 

  96. Choi, J.H. et al. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy. Nanoscale 7, 9229–9237 (2015).

    Article  CAS  Google Scholar 

  97. Eifler, A.C. & Thaxton, C.S. Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol. Biol. 726, 325–338 (2011).

    Article  CAS  Google Scholar 

  98. Zhang, H., Lee, M.Y., Hogg, M.G., Dordick, J.S. & Sharfstein, S.T. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano 4, 4733–4743 (2010).

    Article  CAS  Google Scholar 

  99. Chetprayoon, P., Matsusaki, M. & Akashi, M. Threedimensional human arterial wall models for in vitro permeability assessment of drug and nanocarriers. Biochem. Biophys. Res. Commun. 456, 392–397 (2015).

    Article  CAS  Google Scholar 

  100. Kusunose, J. et al. Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow. Ann. Biomed. Eng. 41, 89–99 (2013).

    Article  Google Scholar 

  101. Samuel, S.P. et al. Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int. J. Nanomedicine 7, 2943–2956 (2012).

    CAS  Google Scholar 

  102. Kim, Y. et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc. Natl. Acad. Sci. USA 111, 1078–1083 (2014).

    Article  CAS  Google Scholar 

  103. Jastrzebska, E. et al. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. Biomicrofluidics 10, 014116 (2016).

    Article  CAS  Google Scholar 

  104. Zervantonakis, I.K. & Arvanitis, C.D. Controlled Drug Release and Chemotherapy Response in a Novel Acoustofluidic 3D Tumor Platform. Small 12, 2616–2626 (2016).

    Article  CAS  Google Scholar 

  105. Albanese, A., Lam, A.K., Sykes, E.A., Rocheleau, J.V. & Chan, W.C.W. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Comm. 4 (2013).

  106. Bhise, N.S. et al. Organ-on-a-chip platforms for studying drug delivery systems. J. Control Release 190, 82–93 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Keun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JH., Lee, J. & Oh, BK. Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. BioChip J 10, 331–345 (2016). https://doi.org/10.1007/s13206-016-0409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0409-z

Keywords

Navigation