Skip to main content
Log in

Engineering hot spots on plasmonic nanopillar arrays for SERS: A review

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Nanopillar arrays have provided unique optical properties due to their multi-dimensional architectures with large surface area. Recently, surface enhanced Raman spectroscopy (SERS) has taken full benefits of nanopillar arrays for highly sensitive chemical and biosensing. This article gives an overview of hot spot engineering on nanopillar arrays for SERS. Nanopillar arrays are very beneficial for providing high density plasmonic nanostructures, which induce the oscillation of free electrons to create highly localized electric fields, i.e., electromagnetic hot spots, for highly intense SERS detection. The diverse methods have successfully demonstrated the nanofabrication of hotspot-rich nanopillar arrays on silicon or glass substrates. Tailoring hot spots enables ultrasensitive detection of biomolecules at low concentrations and even allows single-molecule level detections. This review overviews the nanofabrication methods for nanopillar array construction, the design strategies for electromagnetic hot spot generation on nanopillar arrays, and their SERS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, C. et al. Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 10, 4020–4024 (2010).

    Article  CAS  Google Scholar 

  2. Brammer, K.S., Choi, C., Frandsen, C.J., Oh, S. & Jin, S. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomaterialia 7, 683–690 (2011).

    Article  CAS  Google Scholar 

  3. Bucaro, M.A., Vasques, Y., Hatton, B.D. & Aizenberg, J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6, 6222–6230 (2012).

    Article  CAS  Google Scholar 

  4. Martines, E. et al. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 5, 2097–2103 (2005).

    Article  CAS  Google Scholar 

  5. Zhang, L. & Resasco, D.E. Single-walled carbon nanotube pillars: a superhydrophobic surface. Langmuir 25, 4792–4798 (2009).

    Article  CAS  Google Scholar 

  6. Shieh, J. et al. Robust airlike superhydrophobic surfaces. Adv. Mater. 22, 597–601 (2010).

    Article  CAS  Google Scholar 

  7. Kim, J.-J. et al. Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proc. Nat. Acad. Sci. 109, 18674–18678 (2012).

    Article  CAS  Google Scholar 

  8. Chattopadhyay, S. et al. Anti-reflecting and photonic nanostructures. Mat. Sci. Eng. R 69, 1–35 (2010).

    Article  CAS  Google Scholar 

  9. Li, Y., Zhang, J. & Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 5, 117–127 (2010).

    Article  Google Scholar 

  10. Suzuki, Y. & Yokoyama, K. Construction of a more sensitive fluorescence sensing material for the detection of vascular endothelial growth factor, a biomarker for angiogenesis, prepared by combining a fluorescent peptide and a nanopillar substrate. Biosens. Bioelectron. 26, 3696–3699 (2011).

    Article  CAS  Google Scholar 

  11. Dmitriev, A. et al. Enhanced nanoplasmonics optical sensors with reduced substrate effect. Nano Lett. 8, 3893–3898 (2008).

    Article  CAS  Google Scholar 

  12. Kubo, W. & Fujikawa, S. Au double nanopillars with nanogap for plasmonic sensor. Nano Lett. 11, 8–15 (2011).

    Article  CAS  Google Scholar 

  13. Opilik, L., Schmid, T. & Zenobi, R. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu. Rev. Anal. Chem. 6, 379–398 (2013).

    Article  CAS  Google Scholar 

  14. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    Article  CAS  Google Scholar 

  15. Stiles, P.L., Dieringer, J.A., Shah, N.C. & van Dyune, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  CAS  Google Scholar 

  16. Banholzer, M.J., Millstone, J.E., Qin, L. & Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885–897 (2008).

    Article  CAS  Google Scholar 

  17. Fan, M., Andrade, G.F.S. & Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy. Anal. Chim. Acta. 693, 7–25 (2011).

    Article  CAS  Google Scholar 

  18. Sharma, B. et al. High-performance SERS substrates: advances and challenges. MRS Bulletin 38, 615–624 (2013).

    Article  CAS  Google Scholar 

  19. Docabas, A., Ertas, G., Senlik, S.S. & Aydinli, A. Plasmonic band gap structures for surface-enhanced Raman scattering. Opt. Exp. 16, 12469–12477 (2008).

    Article  CAS  Google Scholar 

  20. Deng, X. et al. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett. 10, 1780–1786 (2010).

    Article  CAS  Google Scholar 

  21. Duan, G., Cai, W., Luo, Y., Li, Z. & Li. Y. Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect. Appl. Phys. Lett. 89, 211905 (2006).

    Article  CAS  Google Scholar 

  22. Kim, J.-H. et al. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering. Nanotechnology 20, 235302 (2009).

    Article  CAS  Google Scholar 

  23. Kho, K.W. et al. Polymer-based microfluidics with surface-enhanced Raman spectroscopy-active periodic metal nanostructures for biofluid analysis. J. Biomed. Opt. 13, 054026 (2008).

    Article  CAS  Google Scholar 

  24. Caldwell, J.D. et al. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5, 4046–4055 (2011).

    Article  CAS  Google Scholar 

  25. Gartia, M.R. et al. Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays. Nanotechnology 21, 395701 (2010).

    Article  CAS  Google Scholar 

  26. Jiang, D. et al. Ag films annealed in a nanoscale limited area for surface-enhanced Raman scattering detection. Nanotechnology 25, 235301 (2014).

    Article  CAS  Google Scholar 

  27. Fu, R. et al. Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses. Chem. Commun. 51, 6609–6612 (2015).

    Article  CAS  Google Scholar 

  28. Cheng, C. et al. Fabrication and SERS performance of silver-nanoparticle-decorated Si/Zno nanotrees in ordered arrays. ACS Appl. Mater. Inter. 2, 1824–1828 (2010).

    Article  CAS  Google Scholar 

  29. Zhang, P.P., Gao, J. & Sun, X.H. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays. Appl. Phys. Lett. 106, 043103 (2015).

    Article  CAS  Google Scholar 

  30. Oh, Y.-J. & Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234–2237 (2012).

    Article  CAS  Google Scholar 

  31. Chang, T.-W., Gartia, M.R., Seo, S., Hsiano, A. & Liu, G.L. A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication. Nanotechnology 25, 145304 (2014).

    Article  CAS  Google Scholar 

  32. Chen, Y. et al. Electrically induced conformational change of peptides on metallic nanosurfaces. ACS Nano 6, 8847–8856 (2012).

    Article  CAS  Google Scholar 

  33. Deng, Y.-L. & Juang, Y.-J. Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis. Biosens. Bioelectron. 53, 37–42 (2014).

    Article  CAS  Google Scholar 

  34. Zuo, Z. et al. Highly sensitive surface enhanced Raamn scattering substrates based on Ag deocrated Si nanocone arrays and their application in trace dimethyl phthalate detection. Appl. Surf. Sci. 325, 45–51 (2015).

    Article  CAS  Google Scholar 

  35. Jeon, T.Y., Park, S.-G., Lee, S.Y., Jeon, H.C. & Yang, S.-M. Shape control of Ag nanostructures for practical SERS substrates. ACS Appl. Mater. Inter. 5, 243–248 (2013).

    Article  CAS  Google Scholar 

  36. Zhang, M.-L. et al. A high-efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J. Phys. Chem. C 114, 1969–1975 (2010).

    Article  CAS  Google Scholar 

  37. Baik, S.Y. et al. Charge-selective surface-enhanced Raman scattering using silver and gold nanoparticles deposited on silicon-carbon core-shell nanowires. ACS Nano 6, 2459–2470 (2012).

    Article  CAS  Google Scholar 

  38. Seol, M.-L. et al. A nanoforest structure for practical surface-enhanced Raman scattering substrates. Nanotechnology 23, 095301 (2012).

    Article  CAS  Google Scholar 

  39. Wang, Y.Q., Ma, S., Yang, Q.Q. & Li, X.J. Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Appl. Surf. Sci. 258, 5881–5885 (2012).

    Article  CAS  Google Scholar 

  40. Kaminska, A. et al. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications. J. Mater. Chem. 21, 8662–8669 (2011).

    Article  CAS  Google Scholar 

  41. Dhawan, A. et al. Methodologies for developing surface-enhanced Raman scattering (SERS) substrates for detection of chemical and biological molecules. IEEE Sens. J. 10, 608–616 (2010).

    Article  CAS  Google Scholar 

  42. Sun, K. et al. Gap-tunable Ag-nanorod arrays on alumina nanotip arrays as effective SERS substrates. J. Mater. Chem. C 1, 5015–5022 (2013).

    Article  CAS  Google Scholar 

  43. Yang, Y. et al. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering. Nanotechnology 21, 325701 (2010).

    Article  CAS  Google Scholar 

  44. Yang, Y. et al. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663–2669 (2012).

    Article  CAS  Google Scholar 

  45. Jose, J., Park, M. & Pyun, J.-C. E. coli outer membrane with autodisplayed Z-domain as a molecular recognition layer of SPR biosensor. Biosens. Bioelectron. 25, 1225–1228 (2010).

    Article  CAS  Google Scholar 

  46. Park, M., Jose, J. & Pyun, J.-C. Hypersensitive immunoassay by using Escherichia coli outer membrane with autodisplayed Z-domains. Enzyme Microb. Technol. 46, 309–314 (2010).

    Article  CAS  Google Scholar 

  47. Park, M., Jose, J. & Pyun, J.-C. SPR biosensor by using E. coli outer membrane layer with autodisplayed Z domains. Sens. Actuators B 154, 82–88 (2011).

    Article  CAS  Google Scholar 

  48. Song, W. et al. Site-specific deposition of Ag nanoparticles on ZnO nanorod arrays via Galvanic reduction and their SERS applications. J. Raman Spectrosc. 41, 907–913 (2010).

    Article  CAS  Google Scholar 

  49. Sinha, G., Depero, L.E. & Alessandri, I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl. Mater. Inter. 41, 907–913 (2011).

    Google Scholar 

  50. Chem, L. et al. ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J. Phys. Chem. C 114, 93–100 (2010).

    Article  CAS  Google Scholar 

  51. He, H., Cai, W., Lin, Y. & Chen, B. Surface decoration of ZnO nanorod arrays by electrophoresis in the Au colloidal solution prepared by laser ablation in water. Langmuir 26, 8925–8932 (2010).

    Article  CAS  Google Scholar 

  52. Tang, H. et al. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv. Funct. Mater. 22, 218–224 (2012).

    Article  CAS  Google Scholar 

  53. Sakano, T. et al. Surface enhanced Raman scattering properties using Au-coated ZnO nanorods grown by two-step, off-axis pulsed laser deposition. J. Phys. D: Appl. Phys. 41, 225304 (2008).

    Article  CAS  Google Scholar 

  54. Lamberti, A. et al. Ultrasensitive Ag-coated TiO 2 nanotube arrays for flexible SERS-based optofluidic devices. J. Mater. Chem. C 3, 6868–6875 (2015).

    Article  CAS  Google Scholar 

  55. Dawson, P. et al. Combined antenna of silver-coated, vertically aligned multiwalled carbon nanotubes. Nano Lett. 11, 365–371 (2011).

    Article  CAS  Google Scholar 

  56. Liu, H., Zeng, B. & Jia, F. Direct growth of tellurium nanorod arrays on Pt/FTO/glass through a surfactant-assisted chemical reduction. Nanotechnology 22, 305608 (2011).

    Article  CAS  Google Scholar 

  57. Carvalho, W.M. et al. Large-area plasmnoic substrate of silver-coated iron oxide nanorod arrays for palsmon-enhanced spectroscopy. Chem. Phys. Chem. 14, 1871–1876 (2013).

    CAS  Google Scholar 

  58. Zhu, H., Chen, H., Wang, J. & Li, Q. Fabrication of Au nanotube arrays and their plasmnoic properties. Nanoscale 5, 3742–3746 (2013).

    Article  CAS  Google Scholar 

  59. Wu, W., Hu, M., Ou, J.S., Li, Z. & Williams, R.S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 21, 255502 (2010).

    Article  CAS  Google Scholar 

  60. Ou, F.S. et al. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Lett. 21, 255502 (2010).

    Google Scholar 

  61. Chen, J. et al. Nanoimprinted patterned pillar substrates for surface-enhanced Raman scattering applications. ACS Appl. Mater. Inter. 7, 22106–22113 (2015).

    Article  CAS  Google Scholar 

  62. Chang, W.-Y. et al. Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering. J. Micromech. Microeng. 21, 035023 (2011).

    Article  CAS  Google Scholar 

  63. Daglar, B., Khudiyev, T., Demirel, G.B., Buyukserin, F. & Bayindir, M. Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing. J. Mater. Chem. C 1, 7842–7848 (2013).

    Article  CAS  Google Scholar 

  64. Yu, Q. et al. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 25, 175502 (2010).

    Google Scholar 

  65. Lovera, P. et al. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications. Nanotechnology 25, 175502 (2014).

    Article  CAS  Google Scholar 

  66. Ruan, C., Eres, G., Wang, W., Zhang, Z. & Gu, B. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy. Langmuir 23, 5757–5760 (2007).

    Article  CAS  Google Scholar 

  67. Zhou, Q. et al. Ag-nanoparticle-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates. Phys. Chem. Chem. Phys. 16, 3686–3692 (2014).

    Article  CAS  Google Scholar 

  68. Huang, Z. et al. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and aplication in detection PCBs. J. Raman Spectrosc. 44, 240–246 (2013).

    Article  CAS  Google Scholar 

  69. Chung, A.J., Huh, Y.S. & Erickson, D. Large area flexible SERS active substrates using engineered nanostructures. Nanoscale 3, 2903–2908 (2011).

    Article  CAS  Google Scholar 

  70. Cha, H.-R. et al. Microfabrication and optical properties of highly ordered silver nanostructures. Nanoscale Res. Lett. 7, 292 (2012).

    Article  CAS  Google Scholar 

  71. Pan, J. et al. Bonding of diatom frustules and Si substrates assisted by hydrofluoric acid. New J. Chem. 38, 206–212 (2014).

    Article  CAS  Google Scholar 

  72. Graca, M., Turner, J., Marshall, M. & Granick, S. Mica sheets with embedded metal nanorods: chemical imaging in a topographically smooth structure. J. Appl. Phys. 102, 064909 (2007).

    Article  CAS  Google Scholar 

  73. Wang, Y. et al. Nanostructured gold films for SERS by block copolymer-templated Galvanic displacement reactions. Nano Lett. 9, 2384–2389 (2009).

    Article  CAS  Google Scholar 

  74. Driskell, J.D. et al. The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J. Phys. Chem. C 112, 895–901 (2008).

    Article  CAS  Google Scholar 

  75. Singh, J.P. et al. Highly sensitive and transparent surface enhanced Raman scattering substrates made by active coldly condensed Ag nanorod arrays. J. Phys. Chem. C 116, 20550–20557 (2012).

    Article  CAS  Google Scholar 

  76. Fu, J., Cao, Z. & Yobas, L. Localized oblique-angle deposition: Ag nanorods on microstructure surfaces and their SERS characteristics. Nanotechnology 22, 505302 (2011).

    Article  CAS  Google Scholar 

  77. Keating, M. et al. Ordered silver and copper nanorod arrays for enhanced Raman scattering created via guided oblique angle deposition on polymer. J. Phys. Chem. C 118, 4878–4884 (2014).

    Article  CAS  Google Scholar 

  78. Zhou, Q., Li, Z., Yang, Y. & Zhang, Z. Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 41, 152007 (2008).

    Article  CAS  Google Scholar 

  79. Zhang, X., Zhou, Q., Ni, J., Li, Z. & Zhang, Z. Surface-enhanced Raman scattering from a hexagonal lattice of micro-patterns of vertically aligned Ag nanorods. Physica E 44, 460–463 (2011).

    Article  CAS  Google Scholar 

  80. Fan, J.-G. & Zhao, Y.-P. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced Raman spectroscopy. Langmuir 24, 14172–14175 (2008).

    Article  CAS  Google Scholar 

  81. Jiwei, Q. et al. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res. Lett. 8, 437 (2013).

    Article  CAS  Google Scholar 

  82. Shao, F. et al. Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl. Mater. Inter. 6, 6281–6289 (2014).

    Article  CAS  Google Scholar 

  83. Tanahashi, I. & Harada, Y. Silver nanoparticles deposited on TiO2-coated cicada and butterfly wings as naturally inspired SERS substrates. J. Mater. Chem. C 3, 5721–5726 (2015).

    Article  CAS  Google Scholar 

  84. Fang, H. et al. Approach for determination of ATP: ADP molar ratio in mixed solution by surface-enhanced Raman scattering. Biosens. Bioelectron. 69, 71–76 (2015).

    Article  CAS  Google Scholar 

  85. Peng, B. et al. Vertically aligned gold nanorod monolayer onarbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993–6000 (2013).

    Article  CAS  Google Scholar 

  86. Roper, C.S., Guté s, A., Carraro, C., Howe, R.T. & Maboudian, R. Single crystal silicon nanopillars, nanoneedles and nanoblades with precise positioning for massively parallel nanoscale device integration. Nanotechnology 23, 225303 (2012).

    Article  CAS  Google Scholar 

  87. Kattumenu, R., Lee, C.H., Tian, L., McConney, M.E. & Singamaneni, S. Nanorod decorated nanowires as highly efficient SERS-active hybrids. J. Mater. Chem. 21, 15218–15223 (2011).

    Article  CAS  Google Scholar 

  88. Lee, S. et al. Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates. Adv. Mater. 24, 5261–5266 (2012).

    Article  CAS  Google Scholar 

  89. Schmidt, M.S., Hü bner, J. & Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 24, OP11–OP18 (2012).

    CAS  Google Scholar 

  90. Caldwell, J.D. et al. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasmaenhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars. Opt. Exp. 19, 26056–26064 (2011).

    Article  CAS  Google Scholar 

  91. Prokes, S.M. et al. Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays. Opt. Exp. 21, 14962–14974 (2013).

    Article  CAS  Google Scholar 

  92. Zhang, L., Zhang, P. & Fang, Y. An investigation of the surface-enhanced Raman scattering effect from new substrates of several kinds of nanowire arrays. J. Colloid Interface Sci. 311, 502–506 (2007).

    Article  CAS  Google Scholar 

  93. Feng, J.-J., Lu, Y.-H., Gernert, U., Hildebrandt, P. & Murgida, D.H. Electrosynthesis of SER-active silver nanopillar electrode arrays. J. Phys. Chem. C 114, 7280–7284 (2010).

    Article  CAS  Google Scholar 

  94. Hu, H. et al. ZnO/Ag heterogeneous structure nanoarrays: photocatalytic synthesis and used as substrate for surface-enhanced Raman scattering detection. J. Alloy. Compd. 509, 2016–2020 (2011).

    Article  CAS  Google Scholar 

  95. Zhang, B. et al. Large-area silver-coated silicon nanowire arrays for molecular sensing using surfaceenhanced Raman spectroscopy. Adv. Funct. Mater. 18, 2348–2355 (2008).

    Article  CAS  Google Scholar 

  96. Feng, F. et al. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 20, 295501 (2009).

  97. Hu, Y.S. et al. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation. ACS Nano 10, 5721–5730 (2010).

    Article  CAS  Google Scholar 

  98. Yamauchi, Y. et al. Electrochemical design of two-dimensional Au nanocone arrays using porous anodic alumina membranes with conical holes. J. Nanosci. Nanotechnol. 10, 4384–4387 (2010).

    Article  CAS  Google Scholar 

  99. Park, M., Oh, Y.-J., Park, S.-G., Yang, S.-B. & Jeong, K.-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface enhanced Raman scattering. Small 11, 2487–2492 (2015).

    Article  CAS  Google Scholar 

  100. Park, S.-G. et al. Plasmon enhanced photoacoustic generation from volumetric electromagnetic hotspots. Nanoscale 8, 757–761 (2016).

    Article  CAS  Google Scholar 

  101. Le Ru, E.C., Blackie, E., Meyer, M. & Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007).

    Article  CAS  Google Scholar 

  102. Félidj, N. et al. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82, 3095–3097 (2003).

    Article  CAS  Google Scholar 

  103. Haynes, C.L. & van Dyune, R.P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003).

    Article  CAS  Google Scholar 

  104. Greeneltch, N.G., Blaber, M.G., Schatz, G.C. & van Duyne, R.P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (?ex=1 064 nm) studies. J. Phys. Chem. C 117, 2554–2558 (2013).

    Article  CAS  Google Scholar 

  105. Oh, Y.-J. et al. Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance. Small 7, 184–188 (2011).

    Article  CAS  Google Scholar 

  106. Kang, M., Kim, J.-J., Oh, Y.-J., Park, S.-G. & Jeong, K.-H. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering. Adv. Mater. 26, 4510–4514 (2014).

    Article  CAS  Google Scholar 

  107. Fukami, K. et al. Gold nanostructures for surface-enhanced Raman spectroscopy, prepared by electrodeposition in porous silicon. Materials 4, 791–800 (2011).

    Article  CAS  Google Scholar 

  108. Jeon, H.C., Heo, C.-J., Lee, S.Y. & Yang, S.-M. Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform. Adv. Funct. Mater. 22, 4268–4274 (2012).

    Article  CAS  Google Scholar 

  109. Olavarria-Fullerton, J. et al. Design and characterization of hybrid morphology nanoarrays as plasmonic Raman probes for antimicrobial detection. Appl. Spectrosc. 67, 1315–1322 (2013).

    Article  CAS  Google Scholar 

  110. Chu, Y.Z. & Crozier, K.B. Experimental study of the interaction between localized and propagating surface plasmons. Opt. Lett. 34, 244–246 (2009).

    Article  CAS  Google Scholar 

  111. Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanonotechnol. 7, 557–561 (2012).

    Article  CAS  Google Scholar 

  112. Bezares, F.J. et al. The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures. Plasmonics 7, 143–150 (2012).

    Article  CAS  Google Scholar 

  113. Camden, J.P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    Article  CAS  Google Scholar 

  114. Kleinman, S.L., Frontiera, R.R., Henry, A.-I., Dieringer, J.A. & van Duyne, R.P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013).

    Article  CAS  Google Scholar 

  115. Gunnarsson, L. et al. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 78, 802–804 (2001).

    Article  CAS  Google Scholar 

  116. Lim, D.-K., Jeon, K.-S., Kim, H.M., Nam, J.-M. & Suh, Y.D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60–67 (2010).

    Article  CAS  Google Scholar 

  117. Yilmaz, M. et al. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Phys. Chem. Chem. Phys. 16, 5563–5570 (2014).

    Article  CAS  Google Scholar 

  118. Huang, Z. et al. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 22, 4136–4139 (2010).

    Article  CAS  Google Scholar 

  119. He, X. et al. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids. Nanoscale 7, 8619–8626 (2015).

    Article  CAS  Google Scholar 

  120. Liao, P.F. & Wokaun, A. Lightning rod effect in surface enhanced Raman-scattering. J. Chem. Phys. 76, 751–752 (1982).

    Article  CAS  Google Scholar 

  121. Bailo, E. & Deckert, V. Tip-enhanced Raman scattering. Chem. Soc. Rev. 37, 921–930 (2008).

    Article  CAS  Google Scholar 

  122. Lombardi, J.R., Brkie, R.L., Lu, T. & Xu. J. Chargertransfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J. Chem. Phys. 84, 4174–4180 (1986).

    Article  CAS  Google Scholar 

  123. Kiraly, B., Yang, S. & Huang, T.J. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobocity, photoluminescence, and surface-enhanced Raman scattering. Nanotechnology 24, 245704 (2013).

    Article  CAS  Google Scholar 

  124. Xu, Z., Jiang, J., Gartia, M.R. & Liu, G.L. Monolithic integrations of slanted silicon nanostructures on 3D microstructures and their application to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 24161–24170 (2012).

    Article  CAS  Google Scholar 

  125. Oh, Y.-J., Kim, J.-J. & Jeong, K.-H. Biologically inspired biophotonic surfaces with self-antireflection. Small 10, 2558–2563 (2014).

    Article  CAS  Google Scholar 

  126. Mo, X., Wu, Y., Zhang, J., Hang, T. & Li, M. Bioinspired multifunctional Au nanostructures with switchable adhesion. Langmuir 31, 10850–10858 (2015).

    Article  CAS  Google Scholar 

  127. Coppé, J.-P., Xu, Z., Chen, Y. & Liu, G.L. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molceules. Nanotechnology 22, 245710 (2011).

    Article  CAS  Google Scholar 

  128. Xu, F. et al. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect. J. Phys. Chem. C 115, 9977–9983 (2011).

    Article  CAS  Google Scholar 

  129. Guo, L. et al. Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering. J. Appl. Phys. 115, 213101 (2014).

    Article  CAS  Google Scholar 

  130. Zhao, X. et al. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. J. Mater. Chem. 19, 5547–5553 (2009).

    Article  CAS  Google Scholar 

  131. Yang, X., Zhong, H., Zhu, Y., Shen, J. & Li, C. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Transactions 42, 14324–14330 (2013).

    Article  CAS  Google Scholar 

  132. Li, X.H., Chen, G.Y., Yang, L.B., Jin, Z. & Liu, J.H. Multifunctional Au-coated TiO 2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 20, 2815–2824 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hun Jeong.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, YJ., Kang, M., Park, M. et al. Engineering hot spots on plasmonic nanopillar arrays for SERS: A review. BioChip J 10, 297–309 (2016). https://doi.org/10.1007/s13206-016-0406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0406-2

Keywords

Navigation