Skip to main content
Log in

Integrative analysis of miRNA and mRNA profiles in response to myricetin in human endothelial cells

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are associated with a diverse range of biological processes, human diseases, and metabolic disorders. Myricetin, which is the most abundant polyphenol class in the human diet, has antioxidative, antiapoptotic, and anti-inflammatory properties. The present study aimed to evaluate whether myricetin modulates miRNA expression. Using microarray analysis, we investigated miRNA expression in human endothelial cells treated with 25 µM and 100 µM of myricetin for 24 hours, and found that 101 and 191 miRNAs, respectively, were differential expressed by at least 1.5-fold. Based on several bioinformatic systems, we also identified signatures of the potential biological processes and signaling pathways that are influenced by dysregulated miRNAs. Therefore, integrating specific patterns of miRNA and mRNA levels may suggest a new mechanism of action of myricetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gutierrez, E. et al. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 34, 3175–3181 (2013).

    Article  Google Scholar 

  2. Sumpio, B.E., Riley, J.T. & Dardik, A. Cells in focus: endothelial cell. Int. J. Biochem. Cell Biol. 34, 1508–1512 (2002).

    Article  CAS  Google Scholar 

  3. Lee, S.E. & Park, Y.S. The role of antioxidant enzymes in adaptive responses to environmental toxicants in vascular disease. Mol. Cell. Toxicol. 9, 95–101 (2013).

    Article  CAS  Google Scholar 

  4. Lee, S.E. & Park, Y.S. Role of lipid peroxidation-derived alpha, beta-unsaturated aldehydes in vascular dysfunction. Oxid. Med. Cell Longev. 2013, 629028 (2013).

    Google Scholar 

  5. Dauchet, L. et al. Frequency of fruit and vegetable consumption and coronary heart disease in France and Northern Ireland: the PRIME study. Br. J. Nutr. 92, 963–972 (2004).

    Article  CAS  Google Scholar 

  6. Chanet, A. et al. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J. Nutr. Biochem. 23, 469–477 (2012).

    Article  CAS  Google Scholar 

  7. Zelus, C. et al. Myricetin Inhibits Islet Amyloid Polypeptide (IAPP) Aggregation and Rescues Living Mammalian Cells from IAPP Toxicity. Open Biochem. J. 6, 66–70 (2012).

    Article  CAS  Google Scholar 

  8. Borde, P., Mohan, M. & Kasture, S. Effect of myricetin on deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Nat. Prod. Res. 25, 1549–1559 (2011).

    Article  CAS  Google Scholar 

  9. Lee, Y.S. & Choi, E.M. Myricetin inhibits IL-1beta-induced inflammatory mediators in SW982 human synovial sarcoma cells. Int. Immunopharmacol. 10, 812–814 (2010).

    Article  CAS  Google Scholar 

  10. Wang, S.J. et al. Anti-inflammatory Activity of Myricetin Isolated from Myrica rubra Sieb. et Zucc. Leaves. Planta Med. 76, 1492–1496 (2010).

    Article  CAS  Google Scholar 

  11. Yi, L. et al. Chemical Structures of 4-Oxo-Flavonoids in Relation to Inhibition of Oxidized Low-Density Lipoprotein (LDL)-Induced Vascular Endothelial Dysfunction. Int. J. Mol. Sci. 12, 5471–5489 (2011).

    Article  CAS  Google Scholar 

  12. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  13. Zeng, Y. Principles of micro-RNA production and maturation. Oncogene. 25, 6156–6162 (2006).

    Article  CAS  Google Scholar 

  14. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).

    Article  CAS  Google Scholar 

  15. Jovanovic, M. & Hengartner, M.O. miRNAs and apoptosis: RNAs to die for. Oncogene. 25, 6176–6187 (2006).

    Article  CAS  Google Scholar 

  16. Schickel, R., Boyerinas, B., Park, S.M. & Peter, M.E. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogen. 27, 5959–5974 (2008).

    Article  CAS  Google Scholar 

  17. Joshi, S.R., McLendon, J.M., Comer, B.S. & Gerthoffer, W.T. MicroRNAs-control of essential genes: Implications for pulmonary vascular disease. Pulm Circ. 1, 357–364 (2011).

    Article  CAS  Google Scholar 

  18. Sayed, A.S., Xia, K., Salma, U., Yang, T. & Peng, J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart, lung & circulatio. 23, 503–510 (2014).

    Article  Google Scholar 

  19. Lee, S.E. et al. MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J. Pineal Res. 51, 345–352 (2011).

    Article  CAS  Google Scholar 

  20. Zhang, Y.Q. et al. Expression profiling and pathway analysis of microRNA expression in the lungs of mice exposed to long-term, low-dose benzo(a)pyrene. Mol. Cell. Toxicol. 10, 67–74 (2014).

    Article  CAS  Google Scholar 

  21. Yang, H. et al. An integrated analysis of microRNA and mRNA expression in salvianolic acid B-treated human umbilical vein endothelial cells. Mol. Cell. Toxicol. 9, 1–7 (2013).

    Article  Google Scholar 

  22. Katoh, M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int. J. Mol. Med. 32, 763–767 (2013).

    CAS  Google Scholar 

  23. An, Y.R. & Hwang, S.Y. Toxicology study with microRNA. Mol. Cell. Toxicol. 10, 127–134 (2014).

    Article  CAS  Google Scholar 

  24. An, Y.R. et al. Functional analysis of endocrine disruptor pesticides affected transcriptome and microRNA regulation in human hepatoma cell line. Mol. Cell. Toxicol. 10, 393–400 (2014).

    Article  CAS  Google Scholar 

  25. Yang, H. et al. Integrated analysis of miRNA and mRNA reveals that acrolein modulates GPI anchor biosynthesis in human primary endothelial cells. Biochip J. 7, 11–16 (2013).

    Article  CAS  Google Scholar 

  26. Dennis, G. ffixJr. et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3 (2003).

    Article  Google Scholar 

  27. Hirose, E. et al. Involvement of Heme Oxygenase-1 in Kaempferol-Induced Anti-Allergic Actions in RBL-2H3 Cells. Inflammation. 32, 99–108 (2009).

    Article  CAS  Google Scholar 

  28. Lin, H.Y., Juan, S.H., Shen, S.C., Hsu, F.L. & Chen, Y.C. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochem. Pharmacol. 66, 1821–1832 (2003).

    Article  CAS  Google Scholar 

  29. Ozcan, F., Ozmen, A., Akkaya, B., Aliciguzel, Y. & Aslan, M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin. Exp. Med. 12, 265–272 (2012).

    Article  CAS  Google Scholar 

  30. Choi, H.S., Song, M.K. & Ryu, J.C. Integrated analysis of microRNA and mRNA expression profiles highlights alterations in modulation of the apoptosis-related pathway under nonanal exposure. Mol. Cell Toxicol. 9, 351–364 (2013).

    Article  CAS  Google Scholar 

  31. Saunders, M.A. & Lim, L.P. (micro)genomic medicine microRNAs as therapeutics and biomarkers. RNA Biol. 6, 324–328 (2009).

    Article  CAS  Google Scholar 

  32. Choi, B.J. et al. GKN1 and miR-185 are associated with CpG island methylator phenotype in gastric cancers. Mol. Cell. Toxicol. 9, 227–233 (2013).

    Article  CAS  Google Scholar 

  33. Boren, T. et al. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol. Oncol. 110, 206–215 (2008).

    Article  CAS  Google Scholar 

  34. Blower, P.E. et al. MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol. Cancer Ther. 6, 1483–1491 (2007).

    Article  CAS  Google Scholar 

  35. Jeong, S.C., Shin, C.Y., Song, M.K., Cho, Y. & Ryu, J.C. Gene expression profiling of human alveolar epithelial cells (A549 cells) exposed to atmospheric particulate matter 2.5 (PM2.5) collected from Seoul, Korea. Mol. Cell. Toxicol. 10, 361–368 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Seek Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.E., Son, G.W., Park, H.R. et al. Integrative analysis of miRNA and mRNA profiles in response to myricetin in human endothelial cells. BioChip J 9, 239–246 (2015). https://doi.org/10.1007/s13206-015-9309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-015-9309-5

Keywords

Navigation