Skip to main content
Log in

Decoration of carbon nanotube films with iridium nanoparticles and their electrochemical characterization

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

We report the development of a novel nonenzymatic glucose sensor based on single-walled carbon nanotube film electrodes coated with iridium nanoparticles (IrNPs-SWCNT). The SWCNT film electrode was first loaded with iridium nanoparticles (IrNPs) by an easily controllable chronocoulometry technique. The SWCNT film electrode coated with IrNPs was characterized by field emission scanning electron microscopy and electrochemical techniques like cyclic voltammetry (CV) and amperometry. There was no current response for glucose oxidation in neutral and acidic media, but a couple of oxidative and reductive peaks were observed when the IrNPs-SWCNT electrode was scanned in alkaline media, showing the strong electrocatalytic activity toward glucose oxidation. Amperometric measurements showed a high sensitivity of 63 μAcm−2 mM−1 and a detection limit of 17 μM; further, the measurements showed a linear range of 0.59–14 mM. To improve the selectivity of the electrode, the prepared IrNPs-SWCNT film electrode was coated using a 1.0% Nafion aqueous solution. When the electrodes were exposed to interfering substances such as uric acid and ascorbic acid, there were no significant signals observed from these substances, indicating that Nafion is an effective permselective polymer barrier. The sensitivity of the Nafion-coated electrode was 23 μAcm−2 mM−1 and the detection limit was 47 μM. In addition, the electro-catalytic activity of the Nafioncoated electrode was still stable after 50 cycles in the presence of a 3.0 mM glucose solution as measured by CV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, J.-S. et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun. 6, 66–70 (2004).

    Article  CAS  Google Scholar 

  2. Wang, J., Thomas, D.F. & Chen, A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Anal. Chem. 80, 997–1004 (2008).

    Article  CAS  Google Scholar 

  3. Holt-Hindle, P., Nigro, S., Asmussen, M. & Chen, A. Amperometric glucose sensor based on platinum-iridium nanomaterials. Electrochem. Commun. 10, 1438–1441 (2008).

    Article  CAS  Google Scholar 

  4. Park, S., Boo, H. & Chung, T.D. Electrochemical nonenzymatic glucose sensors. Anal. Chim. Acta 556, 46–57 (2006).

    Article  CAS  Google Scholar 

  5. Kwon, S.G. & Hyeon, T. Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides. Acc. Chem. Res. 41, 1696–1709 (2008).

    Article  CAS  Google Scholar 

  6. Wilcoxon, J.P. & Abrams, B.L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006).

    Article  CAS  Google Scholar 

  7. Stoimenov, P.K., Klinger, R.L., Marchin, G.L. & Klabunde, K.J. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir 18, 6679–6686 (2002).

    Article  CAS  Google Scholar 

  8. Mori, K. & Yamashita, H. Progress in design and architecture of metal nanoparticles for catalytic applications. Phys. Chem. Chem. Phys. 12, 14420–14432 (2010).

    Article  CAS  Google Scholar 

  9. Welch, C. & Compton, R. The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem. 384, 601–619 (2006).

    Article  CAS  Google Scholar 

  10. Katz, E., Willner, I. & Wang, J. Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles. Electroanal. 16, 19–44 (2004).

    Article  CAS  Google Scholar 

  11. Wu, B., Kuang, Y., Zhang, X. & Chen, J. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 6, 75–90 (2011).

    Article  CAS  Google Scholar 

  12. Kundu, S. & Liang, H. Shape-selective formation and characterization of catalytically active iridium nanoparticles. J. Colloid Interf. Sci. 354, 597–606 (2011).

    Article  CAS  Google Scholar 

  13. Nakatsuji, T. Studies on the structural evolution of highly active Ir-based catalysts for the selective reduction of NO with reductants in oxidizing conditions. Appl. Catal. B-Environ 25, 163–179 (2000).

    Article  CAS  Google Scholar 

  14. Nawdali, M., Iojoiu, E., Gélin, P., Praliaud, H. & Primet, M. Influence of the pre-treatment on the structure and reactivity of Ir/γ-Al2O3 catalysts in the selective reduction of nitric oxide by propene. Appl. Catal. AGeneral 220, 129–139 (2001).

    Article  CAS  Google Scholar 

  15. Reyes, P., Rojas, H. & Fierro, J.L.G. Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts. Appl. Catal. A-General 248, 59–65 (2003).

    Article  CAS  Google Scholar 

  16. Reyes, P., Rojas, H., Pecchi, G. & Fierro, J.L.G. Liquid-phase hydrogenation of citral over Ir-supported catalysts. J. Mol. Catal. A-Chem. 179, 293–299 (2002).

    Article  CAS  Google Scholar 

  17. Liu, G. & Zhang, H. Facile Synthesis of Carbon-Supported IrxSey Chalcogenide Nanoparticles and Their Electrocatalytic Activity for the Oxygen Reduction Reaction. J. Phys. Chem. C 112, 2058–2065 (2008).

    Article  CAS  Google Scholar 

  18. Papageorgopoulos, D.C., Liu, F. & Conrad, O. Reprint of “A study of RhxSy/C and RuSex/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications”. Electrochim. Acta 53, 1037–1041 (2007).

    Article  CAS  Google Scholar 

  19. Marshall, A., BØrresen, B., Hagen, G., Tsypkin, M. & Tunold, R. Electrochemical characterisation of IrxSn1-xO2 powders as oxygen evolution electrocatalysts. Electrochim. Acta 51, 3161–3167 (2006).

    Article  CAS  Google Scholar 

  20. Colby, D.A., Bergman, R.G. & Ellman, J.A. Stereoselective Alkylation of α,β-Unsaturated Imines via CH Bond Activation. J. Am. Chem. Soc. 128, 5604–5605 (2006).

    Article  CAS  Google Scholar 

  21. Tzschucke, C.C., Murphy, J.M. & Hartwig, J.F. Arenes to Anilines and Aryl Ethers by Sequential Iridium-Catalyzed Borylation and Copper-Catalyzed Coupling. Org. Lett. 9, 761–764 (2007).

    Article  CAS  Google Scholar 

  22. Wong-Foy, A.G., Bhalla, G., Liu, X.Y. & Periana, R. A. Alkane C-H Activation and Catalysis by an ODonor Ligated Iridium Complex. J. Am. Chem. Soc. 125, 14292–14293 (2003).

    Article  CAS  Google Scholar 

  23. Wang, J., Rivas, G. & Chicharro, M. Glucose microsensor based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber electrodes. J. Electroanal. Chem. 439, 55–61 (1997).

    Article  CAS  Google Scholar 

  24. Jhas, A.S., Elzanowska, H., Sebastian, B. & Birss, V. Dual oxygen and Ir oxide regeneration of glucose oxidase in nanostructured thin film glucose sensors. Electrochim. Acta 55, 7683–7689 (2010).

    Article  CAS  Google Scholar 

  25. Shen, J., Dudik, L. & Liu, C.-C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensor. Actuat. B-Chem 125, 106–113 (2007).

    Article  CAS  Google Scholar 

  26. Rodríguez, M.C. & Rivas, G.A. Glucose Biosensor Prepared by the Deposition of Iridium and Glucose Oxidase on Glassy Carbon Transducer. Electroanal. 11, 558–564 (1999).

    Article  Google Scholar 

  27. Fang, L., Li, W., Zhou, Y. & Liu, C.-C. A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection. Sensor. Actuat. B-Chem. 137, 235–238 (2009).

    Article  Google Scholar 

  28. Baughman, R.H., Zakhidov, A.A. & de Heer, W.A. Carbon Nanotubes-the Route Toward Applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  29. Jacobs, C.B., Peairs, M.J. & Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662, 105–127 (2010).

    Article  CAS  Google Scholar 

  30. Wang, J. et al. Nonenzymatic Glucose Sensor Using Freestanding Single-Wall Carbon Nanotube Films. Electrochem. Solid-State Lett. 10, J58–J60 (2007).

    Article  CAS  Google Scholar 

  31. Kang, X., Mai, Z., Zou, X., Cai, P. & Mo, J. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotubemodified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007).

    Article  CAS  Google Scholar 

  32. Li, L.-H. & Zhang, W.-D. Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163, 305–311 (2008).

    Article  CAS  Google Scholar 

  33. Cui, H.-F. et al. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Anal. Chim. Acta 594, 175–183 (2007).

    Article  CAS  Google Scholar 

  34. Xiao, F., Zhao, F., Mei, D., Mo, Z. & Zeng, B. Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens. Bioelectron. 24, 3481–3486 (2009).

    Article  CAS  Google Scholar 

  35. Pham, X.-H., Ngoc Bui, M.-P., Li, C.A., Han, K.N. & Seong, G.H. Electrochemical Patterning of Palladium Nanoparticles on a Single-Walled Carbon Nanotube Platform and Its Application to Glucose Detection. Electroanal. 23, 2087–2093 (2011).

    Article  CAS  Google Scholar 

  36. Moore, C.M., Akers, N.L., Hill, A.D., Johnson, Z.C. & Minteer, S.D. Improving the Environment for Immobilized Dehydrogenase Enzymes by Modifying Nafion with Tetraalkylammonium Bromides. Biomacromolecules 5, 1241–1247 (2004).

    Article  CAS  Google Scholar 

  37. Male, K.B., Hrapovic, S., Liu, Y., Wang, D. & Luong, J.H.T. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta 516, 35–41 (2004).

    Article  CAS  Google Scholar 

  38. Kong, B.-S., Jung, D.-H., Oh, S.-K., Han, C.-S. & Jung, H.-T. Single-Walled Carbon Nanotube Gold Nanohybrids: Application in Highly Effective Transparent and Conductive Films. J. Phys. Chem. C 111, 8377–8382 (2007).

    Google Scholar 

  39. Bui, M.-P.N. et al. Electrochemical patterning of gold nanoparticles on transparent single-walled carbon nanotube films. Chem. Commun. 5549–5551 (2009).

    Google Scholar 

  40. Ndamanisha, J.C. & Guo, L.P. Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrochem. 77, 60–63 (2009).

    Article  CAS  Google Scholar 

  41. Zhou, Y.G., Yang, S., Qian, Q.Y. & Xia, X.H. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem. Commun. 11, 216–219 (2009).

    Article  CAS  Google Scholar 

  42. Li, Y., Song, Y.Y., Yang, C. & Xia, X.H. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 9, 981–988 (2007).

    Article  CAS  Google Scholar 

  43. Park, S., Chung, T.D. & Kim, H.C. Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046–3049 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi Hun Seong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Pham, XH., Han, K.N. et al. Decoration of carbon nanotube films with iridium nanoparticles and their electrochemical characterization. BioChip J 8, 129–136 (2014). https://doi.org/10.1007/s13206-014-8208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-8208-x

Keywords

Navigation