Skip to main content
Log in

Water-stable single-walled carbon nanotubes coated by pyrenyl polyethylene glycol for fluorescence imaging and photothermal therapy

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Nanomaterials have recently received significant attention as photothermal agents and fluorescence contrast agents for molecular therapeutics due to their unique optical properties (e.g. light absorption). In particular, single-walled carbon nanotubes (SWNTs) have been recently utilized as photothermal agents (for photothermal therapy) because of the solubility of SWNTs as well as their light absorbing capability at the near-infrared region. In this work, we have developed the SWNT-based photothermal agents using pyrene-based PEGylation of SWNTs. FT-IR and/or H-NMR spectroscopies have validated the PEGylation of SWNTs, and it is shown that water-soluble SWNTs are able to generate heat under near-infrared (NIR) irradiation of 5W/cm2. Moreover, it is found that our pyrene-based PEGylated SWNTs exhibit the fluorescence characteristic under the excitation wavelength of 340 nm. Our study sheds light on the pyrenyl PEGylated SWNTs as photothermal agents and/or fluorescence contrast agents for the future applications in molecular therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gobin, A.M. et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007).

    Article  CAS  Google Scholar 

  2. Hirsch, L.R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

  3. Ji, X. et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J. Phys. Chem. C 111, 6245–6251 (2007).

    Article  CAS  Google Scholar 

  4. Moon, H.K., Lee, S.H. & Choi, H.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3, 3707–3713 (2009).

    Article  CAS  Google Scholar 

  5. Choi, R. et al. Thiolated dextran-coated gold nanorods for photothermal ablation of inflammatory macrophages. Langmuir 26, 17520–17527 (2010).

    Article  CAS  Google Scholar 

  6. Dickerson, E.B. et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269, 57–66 (2008).

    Article  CAS  Google Scholar 

  7. Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  8. James, F.H. et al. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309 (2004).

    Article  Google Scholar 

  9. Kam, N.W.S., O’Connell, M., Wisdom, J.A. & Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102, 11600–11605 (2005).

    Article  CAS  Google Scholar 

  10. Liu, X. et al. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32, 144–151 (2011).

    Article  Google Scholar 

  11. Robinson, J. et al. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 3, 779–793 (2010).

    Article  CAS  Google Scholar 

  12. Hobbs, S.K. et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95, 4607–4612 (1998).

    Article  CAS  Google Scholar 

  13. Jain, P.K. & El-Sayed, M.A. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett. 7, 2854–2858 (2007).

    Article  CAS  Google Scholar 

  14. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  15. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotech. 19, 316–317 (2001).

    Article  CAS  Google Scholar 

  16. O’Connell, M.J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  17. Bianco, A., Kostarelos, K., Partidos, C.D. & Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 571–577 (2005).

  18. Bianco, A., Kostarelos, K. & Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005).

    Article  CAS  Google Scholar 

  19. Kam, N.W.S. & Dai, H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005).

    Article  CAS  Google Scholar 

  20. Kam, N.W.S., Liu, Z. & Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. 118, 591–595 (2006).

    Article  Google Scholar 

  21. Chen, J. et al. Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998).

    Article  CAS  Google Scholar 

  22. Moore, V.C. et al. Individually suspended singlewalled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003).

    Article  CAS  Google Scholar 

  23. Barone, P.W., Baik, S., Heller, D.A. & Strano, M.S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2005).

    Article  CAS  Google Scholar 

  24. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R.J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nano. 2, 640–646 (2007).

    Article  CAS  Google Scholar 

  25. Nel, A., Xia, T., Mädler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  26. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nano. 4, 773–780 (2009).

    Article  CAS  Google Scholar 

  27. Chen, R.J., Zhang, Y., Wang, D. & Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001).

    Article  CAS  Google Scholar 

  28. Prencipe, G. et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 131, 4783–4787 (2009).

    Article  CAS  Google Scholar 

  29. Jaegfeldt, H., Kuwana, T. & Johansson, G. Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide. J. Am. Chem. Soc. 105, 1805–1814 (1983).

    Article  CAS  Google Scholar 

  30. Lim, E.-K. et al. Self-assembled fluorescent magnetic nanoprobes for multimode-biomedical imaging. Biomaterials 31, 9310–9319 (2010).

    Article  CAS  Google Scholar 

  31. Jeon, S.I., Lee, J.H., Andrade, J.D. & De Gennes, P.G. Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J. Colloid Interface Sci. 142, 149–158 (1991).

    Article  CAS  Google Scholar 

  32. Kaiwang, Z. et al. Melting and premelting of carbon nanotubes. Nanotechnology 18, 285703 (2007).

    Article  Google Scholar 

  33. Meyer, F. et al. Poly(amino-methacrylate) as versatile agent for carbon nanotube dispersion: an experimental, theoretical and application study. J. Mater. Chem. 20, 6873–6880 (2010).

    Article  CAS  Google Scholar 

  34. Bachilo, S.M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  35. Tallury, S.S. & Pasquinelli, M.A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J. Phys. Chem. B 114, 4122–4129 (2010).

    Article  CAS  Google Scholar 

  36. Rahmat, M. & Hubert, P. Carbon nanotube-polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 72, 72–84 (2011).

    Article  CAS  Google Scholar 

  37. Dewey, W.C. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperther. 10, 457–483 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woo-Jae Kim or Taeyun Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, K., Eom, K., Lee, G. et al. Water-stable single-walled carbon nanotubes coated by pyrenyl polyethylene glycol for fluorescence imaging and photothermal therapy. BioChip J 6, 396–403 (2012). https://doi.org/10.1007/s13206-012-6412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6412-0

Keywords

Navigation