Skip to main content
Log in

Fabrication of a hydrophobic/hydrophilic hybrid-patterned microarray chip and its application to a cancer marker immunoassay

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

In this work, we report on a simple process for fabricating a hydrophobic/hydrophilic hybrid-patterned microarray chip for a fast and sensitive immunoassay. Two different types of self-assembled monolayers (SAMs) were used in the fabrication of hydrophilic well patterns and hydrophobic substrates. The hydrophilic/hydrophobic hybrid SAM pattern generates a clear-cut boundary between the sample and the background. A change in the precursor molecules allows for many different types of SAMs to be employed in the fabrication process. Fluorescence image-based detection has previously been used for the quantitative immune-analysis of a specific cancer marker. Here, a titanium-coated glass substrate was utilized to suppress auto-fluorescence signals from substrate backgrounds. Angiogenin (ANG), a small polypeptide implicated in both angiogenesis and tumor growth, was used as a target cancer marker for its validation. Assay results demonstrate that the hybrid-patterned array chip yields a narrower error deviation and a lower coefficient variation than in a conventional 96-well plate ELISA. Furthermore, the sample requirement (1 μL) for the hybrid-patterned chip is about 50 times less than that required in an ELISA (at least 50 μL). The proposed hydrophobic/hydrophilic hybrid-patterned microarray chip is expected to be a highly efficient tool that can be applied to a high throughput immunoassay of a specific cancer marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glökler, J. & Angenendt, P. Protein and antibody microarray technology. J. Chromatogr. B 797, 229–240 (2003).

    Article  Google Scholar 

  2. Joos, T.O. et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21, 2641–2650 (2000).

    Article  CAS  Google Scholar 

  3. Angenendt, P. Progress in protein and antibody microarray technology. Drug Discov. Today 10, 503–511 (2005).

    Article  CAS  Google Scholar 

  4. Kang, S.H. & Islam, M.S. Biosensors on array chip by dual-color total internal reflection fluorescence microscopy. BioChip J. 3, 97–104 (2009).

    Google Scholar 

  5. Jang, H.J., Cho, Y.W. & Lee, E.K. Proteochip-based immunoassay method for quantitative determination of serum tumor markers. BioChip J. 3, 171–180 (2009).

    Google Scholar 

  6. Lee, J. et al. Microarray of stimuli-responsive microbeads for duplexed immunoassay. BioChip J. 5, 158–164 (2011).

    Article  CAS  Google Scholar 

  7. Deegan, R.D. et al. Progress in protein and antibody microarray technology. Nature 389, 827–829 (1997).

    Article  CAS  Google Scholar 

  8. Kajiya, T., Kaneko, D. & Doi, M. Dynamical visualization of coffee stain phenomenon in droplets of polymer solution via fluorescent microscopy. Langmuir 24, 12369–12374 (2008).

    Article  CAS  Google Scholar 

  9. Moran-Mirabal, J.M. et al. Controlling microarray spot morphology with polymer liftoff arrays. Anal. Chem. 79, 1109–1114 (2007).

    Article  CAS  Google Scholar 

  10. Zhang, H., Lee, Y.Y., Leck, K.J., Kim, N.Y. & Ying, J.Y. Recyclable hydrophilic-hydrophobic micropatterns on glass for microarray applications. Langmuir 23, 4728–4731 (2007).

    Article  CAS  Google Scholar 

  11. Yin, L.T., Hu, C.Y. & Chang, C.H. A single layer nitrocellulose substrate for fabricating protein chips. Sensor Actuat. B-Chem. 130, 374–378 (2008).

    Article  Google Scholar 

  12. Chang, Y.J., Hu, C.Y., Yin, L.T., Chang, C.H. & Su, H.J. Dividable membrane with multi-reaction wells for microarray biochips. J. Biosci. Bioeng. 106, 59–64 (2008).

    Article  CAS  Google Scholar 

  13. Jang, L.S. & Liu, H.J. Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer. Biomed. Microdevices. 11, 331–338 (2009).

    Article  CAS  Google Scholar 

  14. Critchley, K. et al. A mild photoactivated hydrophilic/hydrophobic switch. Langmuir 21, 4554–4561 (2005).

    Article  CAS  Google Scholar 

  15. Cha, N.G., Echegoyen, Y., Kim, T.H., Park, J.G. & Busnaina, A.A. Convective assembly and dry transfer of nanoparticles using hydrophobic/hydrophilic monolayer templates. Langmuir 25, 11375–11382 (2009).

    Article  CAS  Google Scholar 

  16. Mani, G. et al. Stability of self-assembled monolayers on titanium and gold. Langmuir 24, 6774–6784 (2008).

    Article  CAS  Google Scholar 

  17. Pérez-Luna, V.H. et al. Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface. Biosens. Bioelectron. 17, 71–78 (2002).

    Article  Google Scholar 

  18. Wu, H.P., Cheng, T.L. & Tseng, W.L. Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching. Langmuir 23, 7880–7885 (2007).

    Article  CAS  Google Scholar 

  19. Yoshioka, N., Wang, L., Kishimoto, K., Tsuji, T. & Hu, G. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc. Natl. Acad. Sci. USA 103, 14519–14524 (2006).

    Article  CAS  Google Scholar 

  20. Srisa-Art, M. et al. Analysis of protein-protein interactions by using droplet-based microfluidics. Chem. Bio. Chem. 10, 1605–1611 (2009).

    CAS  Google Scholar 

  21. Chang, S.I. et al. Detection, quantitation, and localization of bovine angiogenin by immunological assays. Biochem. Biophys. Res. Commun. 232, 323–327 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaebum Choo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Kim, K.H., Park, JG. et al. Fabrication of a hydrophobic/hydrophilic hybrid-patterned microarray chip and its application to a cancer marker immunoassay. BioChip J 6, 10–16 (2012). https://doi.org/10.1007/s13206-012-6102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6102-y

Keywords

Navigation