Skip to main content
Log in

Environmental factors that affect Streptococcus mutans biofilm formation in a microfluidic device mimicking teeth

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Streptococcus mutans is the primary etiological agent responsible for dental caries. Microfluidic devices have been used to provide a level of control over bacterial microenvironments under laminar flow conditions. In this study, we used a microfluidic device packed with glass beads to simulate the interproximal space, which is the space between the teeth. In the device, the effects of environmental factors, such as sucrose and metal ions, on S. mutans attachment and biofilm formation were quantitatively measured using confocal laser scanning microscopy and atomic force microscopy. We determined that sucrose was required for both bacterial attachment and exopolysaccharide (EPS) production in S. mutans. These results suggest that the in vivo condition between the teeth was successfully mimicked and that the device is highly suitable for in situ monitoring of oral biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas, J.G. & Nakaishi, L.A. Managing the complexity of a dynamic biofilm. JADA. 137, 10S–15S (2006).

    CAS  Google Scholar 

  2. Prasad, S., Peter, C.M., Hansen, H., Meaden, P.G. & Austin, B. A novel bacteriocin-like inhibitory substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology 151, 3051–3058 (2005).

    Article  CAS  Google Scholar 

  3. Murchison, H., Larrimore, S., Hull, S. & Iii, R.C. Isolation and characterization of Streptococcus mutans mutants with altered cellular morphology or chain length. Infect. Immun. 38, 282–291 (1982).

    CAS  Google Scholar 

  4. Davey, M.E. & O’Toole, G. Microbial biofilm: From ecology to molecular genetic. Microbiol. Mol. Biol. Revs. 64, 847–867 (2000).

    Article  CAS  Google Scholar 

  5. Shimotoyodome, A. et al. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience. Caries Res. 41, 212–218 (2007).

    Article  CAS  Google Scholar 

  6. Scheie, A.A. Mechanisms of dental plaque formation. Adv. Dent. Res. 8, 246–253 (1994).

    CAS  Google Scholar 

  7. Yoshida, A. & Kuramitsu, H.K. Multiple Streptococcus mutans genes are involved in biofilm formation. Appl. Environ. Microbiol. 68, 6283–6291 (2002).

    Article  CAS  Google Scholar 

  8. Bowden, G.H.W. & Hamilton, I.R. Survival of oral bacteria. Crit. Rev. Oral Biol. Med. 9, 54–85 (1998).

    Article  CAS  Google Scholar 

  9. Hope, C.K., Petrie, A. & Wilson, M. Efficacy of removal of sucrose-supplemented interproximal plaque by electric toothbrushes in an in vitro model. App. Env. Microbiol. 71, 1114–1116 (2005).

    Article  CAS  Google Scholar 

  10. Kolenbrander, P.E., Andersen, R.N. & Moor, L.V.H. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect. Immun. 57, 3194–3203 (1989).

    CAS  Google Scholar 

  11. Newburn, E. Extracellular polysaccharides systhesized by glycosyltransfererases or oral streptococci. Caries Res. 6, 132–147 (1972).

    Article  Google Scholar 

  12. Bowen, W.H. Do we need to be concerned about dental caries in the coming millennium? Crit. Rev. Oral Biol. Med. 13, 126–131 (2002).

    Article  Google Scholar 

  13. Stephan, R.M. Intra-oral hydrogen-ion concentration associated with dental caries activity. J. Dent. Res. 23, 257–266 (1944).

    Article  Google Scholar 

  14. Bowen, W.H., Cohen, B., Cole, M. & Colman, G. Immunisation against dental caries. Brit. dent. J. 139, 45–48 (1975).

    Article  CAS  Google Scholar 

  15. Honraet, K. & Nelis, H.J. Use of the modified robbins device and fluorescent staining to screen plant extracts for the inhibition of S. mutans biofilm formation. J. Microbiol. Methods. 64, 217–224 (2006).

    Article  CAS  Google Scholar 

  16. Hansen, M.C., Palmer, R.J., Udsen, C., White, D.C. & Molin, S. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147, 1383–1391 (2001).

    CAS  Google Scholar 

  17. Matsukawa, M. & Greenberg, E.P. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186, 4449–4456 (2004).

    Article  CAS  Google Scholar 

  18. Lim, J. et al. Nanoscale characterization of Escherichia coli biofilm formed under laminar flow using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Bull. Kor. Chem. Soc. 29, 2114–2118 (2008).

    Article  CAS  Google Scholar 

  19. Edgar, M. Saliva and dental health. Br. Dent. J. 169, 96–98 (1990).

    CAS  Google Scholar 

  20. Coenye, T., Honreat, K., Rigole, P., Jimenez, P.N. & Nelis, H.J. In vitro inhibition of Streptococcus mutans biofilm formation on hydroxyapatite by sub-inhibitory concentrations of anthraquinones. Antimicrob. Agents Chemother. 51, 1541–1544 (2007).

    Article  CAS  Google Scholar 

  21. Zanin, I.C.J., Goncalves, R.B., Junior, A.B., Hope, C.K. & Partten, J. Susceptibility of Streptococcus mutans biofilm to photodynamic theraphy: an in vitro study. J. Antimicrobiol. Chemother. 56, 3254–330 (2005).

    Article  Google Scholar 

  22. Huh, D., Gu, W., Kamotani, Y., Grotberg, J.B. & Takayama, S. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005).

    Article  Google Scholar 

  23. Richter, L. et al. Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab Chip 7, 1723–1731 (2007).

    Article  CAS  Google Scholar 

  24. Lu, H. et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76, 5257–5264 (2004).

    Article  CAS  Google Scholar 

  25. Matsuyama, J., Sato, T., Hoshino, E., Noda, T. & Takahashi, N. Fermentation of five sucrose isomers by human dental plaque bacteria. Caries Res. 37, 410–415 (2003).

    Article  CAS  Google Scholar 

  26. Shumi, W. et al. Fluorescence imaging of the spatial distribution of ferric ions over biofilmf fromed by Streptococcus mutans under microfluidic conditions. BioChip J. 3, 119–124 (2009).

    Google Scholar 

  27. Xia, Y. & Whitesides, G.A. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsu Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumi, W., Lim, J., Nam, SW. et al. Environmental factors that affect Streptococcus mutans biofilm formation in a microfluidic device mimicking teeth. BioChip J 4, 257–263 (2010). https://doi.org/10.1007/s13206-010-4401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-010-4401-8

Keywords

Navigation