Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium nitroprusside;SNP) and a nitric oxide synthesis inhibitor (Nω-nitro-L-arginine methyl ester;L-NAME) on lettuce plants under well watered and drought conditions

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) symbiosis is known to help the host plant to overcome environmental stresses as drought by a combination of multiple mechanisms including enhancing of root water uptake capacity. On the other hand, Nitric oxide (NO) is involved in regulating the response of plants to environmental stresses and colonization process of AM fungi. The objective of this research was to study how AM and non-AM lettuce plants responded to a NO donor (sodium nitroprusside; SNP) or to a NO synthesis inhibitor (Nω-nitro-L-arginine methyl ester hydrochloride; L-NAME) under well watered and drought conditions. Most remarkable results were that L-NAME increased the percentage of AM colonized roots under both water regimes and AM plants modified the shoot:root ratio by both chemicals under well watered conditions. Also, the deleterious effects of SNP treatment were partially prevented by AM symbiosis. Moreover, NO could be involved in the diminution of leaf water content under drought conditions, and SNP treatment seems to favor apoplastic water path inside roots. Therefore, different outcomes of relative water content, stomatal conductance and root hydraulic conductivity observed between AM and non-AM plants could be mediated by NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour H, Saeidi-Sar S, Afshari H (2011) Improving drought tolerance of Pistacia vera L. seedlings by arbuscular mycorrhiza under greenhouse conditions. J Med Plant Res 5:7065–7072

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubis J (2009a) Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber. Plant Growth Regul 28:177–186

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubis J (2009b) Involvement of nitric oxide in water stress-induced responses of cucumber roots. Plant Sci 177:682–690

    Article  CAS  Google Scholar 

  • Aroca R (2006) Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. plants. J Plant Growth Regul 25:10–17

    Article  CAS  Google Scholar 

  • Aroca R, Irigoyen JJ, Sanchez-Diaz M (2003) Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117:540–549

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  CAS  PubMed  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27:349–363

    Article  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide Biol Chem 3:199–208

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L (2012) The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza 22:259–269

    Article  CAS  PubMed  Google Scholar 

  • Clark G, Wu M, Wat N, Onyrimba J, Pham T, Herz N, Ogoti J, Gómez D, Canales AA, Aranda G, Blizard M, Nyberg T, Terry A, Torres J, Wu JA, Roux SJ (2010) Both stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Mol Biol 74:423–435

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  CAS  PubMed  Google Scholar 

  • Di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V (2013) Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol Cell Proteomics 12:3886–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinler BS, Antoniou C, Fotopoulos V (2014) Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. J Plant Physiol 171:1740–1747

    Article  CAS  PubMed  Google Scholar 

  • El-Mesbahi MN, Azcon R, Ruiz-Lozano JM, Aroca R (2012) Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza 22:555–564

    Article  CAS  PubMed  Google Scholar 

  • Espinosa F, Garrido I, Ortega A, Casimiro I, Alvarez-Tinaut MC (2014) Redox activities and ROS, NO and phenylpropanoids production by axenically. PLoS One 9:e100132

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan QJ, Liu JH (2012) Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31:145–154

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhizal symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hao GP, Xing YF, Zhang JH, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the. J Integr Plant Biol 50:435–442

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1952). Sand and water culture methods used in the study of plant nutrition. Farnham Royal (Bucks), Commonwealth Agricultural Bureaux, 1966, U.K.

  • Hu XY, Neill SJ, Tang ZC, Cai WM (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin HR (2009) Arginine bi-directional translocation and breakdown into ornithine along the arbuscular mycorrhzial mycelium. Sci China Ser C-Life Sci 52:381–389

    Article  CAS  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    Article  CAS  PubMed  Google Scholar 

  • Kolbert Z, Ortega L, Erdei L (2010) Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J Plant Physiol 167:77–80

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Yin C, Li C (2007) Adaptive responses of Populus przewalskii to drought stress and SNP application. Acta Physiol Plant 29:519–526

    Article  CAS  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas - nitric oxide (NO(center dot)) - as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Li C, Li T, Zhang D, Jiang L, Shao Y (2013a) Exogenous nitric oxide effect on fructan accumulation and FBEs expression in chilling-sensitive and chilling-resistant wheat. Environ Exp Bot 86:2–8

    Article  CAS  Google Scholar 

  • Li Y, Liu Z, Hou H, Lei H, Zhu X, Li X, He X, Tian C (2013b) Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol Plant 35:3465–3475

    Article  CAS  Google Scholar 

  • Li Z, Wu N, Liu T, Chen H, Tang M (2015) Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. Physiol Plant 155:192–204

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chorophylls and carotenoids- pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu YJ, Jiang HF, Zhao ZG, An LZ (2010) Nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells. Plant Physiol Biochem 48:936–944

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ (2013) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  PubMed  Google Scholar 

  • Liu SL, Yang RJ, Pan YZ, Ma MD, Pan J, Zhao Y, Cheng QS, Wu MX, Wang MH, Zhang L (2015) Nitric oxide contributes to minerals absorption, protn pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. Ecotoxicol Environ Saf 119:35–46

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Pedroso MC, Durzan DJ (2000) Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann Bot 86:983–994

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure of clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:159–161

    Article  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer Science Business Media, Dordrecht, pp 239–256

    Chapter  Google Scholar 

  • Steudle E (1997) Water transport across plant tissue: role of water channels. Biol Cell 89:259–273

    Article  CAS  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Takahashi S, Yamasaki H (2002) Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett 512:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Lei Y (2006) Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant 50:775–778

    Article  CAS  Google Scholar 

  • Tossi V, Cassia R, Lamattina L (2009) Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. J Plant Physiol 166:1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F, Gomez-Rodriguez MV, Colmenero-Varea P, del Rio LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Huang H, Zhang S, Zhu YG, Christie P, Zhang Y (2009) Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Environ Pollut 157:1613–1618

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Zhang L, Fu G, Yang Y, Zhu C, Tao L (2012) Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J Plant Res 125:155–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang RQ, Zhu HH, Zhao HQ, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170:74–79

    Article  CAS  PubMed  Google Scholar 

  • Zhang B-L, Shang SH, Jabben Z, Zhang GP (2014) Sodium chloride alleviates cadmium toxicity by reducing nitric oxide accumulation in tobacco. Ecotoxicol Environ Saf 110:56–60

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang L, Ma F, Bloomfield KJ, Yang J, Atkin OK (2015) In resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi? J Plant Ecol 8:436–448

    Article  Google Scholar 

  • Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F, Terzi M (2002) Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett 515:75–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Economía y Competitividad (Spain) by a grant AGL2011-25403 to R. Aroca, JM Ruiz-Lozano and B. Sánchez-Romera. B. Sánchez-Romera was supported by a fellowship from the Formación de Personal Investigador program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Aroca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Romera, B., Porcel, R., Ruiz-Lozano, J.M. et al. Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium nitroprusside;SNP) and a nitric oxide synthesis inhibitor (Nω-nitro-L-arginine methyl ester;L-NAME) on lettuce plants under well watered and drought conditions. Symbiosis 74, 11–20 (2018). https://doi.org/10.1007/s13199-017-0486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-017-0486-3

Keywords

Navigation