Skip to main content
Log in

Culturable autochthonous gut bacteria in rohu, Labeo rohita. In vitro growth inhibition against pathogenic Aeromonas spp., stability in gut, bio-safety and identification by 16S rRNA gene sequencing

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Autochthonous endosymbiotic gut bacteria antagonistic against pathogenic Aeromonas spp. have been evaluated in rohu, Labeo rohita for characterization of putative probiotics. Four promising pathogen inhibitory bacteria (23 strains out of 225 isolates showed antagonism) were selected by double layer assay, following which inhibition pattern was examined through in vitro growth curve and statistical analyses. Cell free supernatant (CFS) of the selected gut bacteria significantly inhibited the growth of pathogenic aeromonads. While, CFS of strain LR3FG26 was the most efficient among them. Selected strains were γ haemolytic and susceptible to most of the common antibiotics that demonstrated their likely non-pathogenic and eco-friendly nature. Additionally, selected bacteria produced different exo-enzymes (digestive and antinutritional factors degrading), could grow better in skin mucus than intestinal mucus (exceptionally, LR3FG26 grew better in skin mucus) and tolerated diluted bile juice (2–20%). 16S rRNA partial gene sequence analyses and Blast search in NCBI GenBank unveiled that the strains LR1FG1, LR2HG13, LR3FG26 and LR3HG4 were similar with the type strains of Bacillus methylotrophicus (NR116240), Bacillus amyloliquefaciens (NR117946), Pseudomonas fluorescens (NR113647) and Bacillus licheniformis (NR118996), respectively. Application of these symbiotic pathogen-inhibitory bacteria in pathogen challenge studies is required to appraise their probiotic effects in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Askarian F, Kousha A, Salma W, Ringø E (2011) The effect of lactic acid bacteria administration on growth, digestive enzymes activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso ) fry. Aquac Nutr 17:488–497

    Article  Google Scholar 

  • Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringø E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326–329:1–8

    Article  Google Scholar 

  • Austin B, Stuckey LF, Robertson PAW, Effendi I, Griffith DRW (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis 18:93–96

    Article  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Inter-laboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Balcázar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186

    Article  PubMed  Google Scholar 

  • Balcázar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Múzquiz JL, Girones O (2008) Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 278:188–191

    Article  Google Scholar 

  • Banerjee G, Ray AK (2016) Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis. doi:10.1007/s13199-016-0441-8

    Google Scholar 

  • Bernfeld P (1955) Methods in enzymology. Academic Press, New York, pp 149–150

    Google Scholar 

  • Bier M (1955) Methods in enzymology. Academic Press, New York, pp 627–642

    Google Scholar 

  • Bøgwald J, Dalmo RA (2014) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley-Blackwell Publishing, Oxford, pp 53–74

    Google Scholar 

  • Burbank DR, La-Patra SE, Fornshell G, Cain KD (2012) Isolation of bacterial probiotic candidates from the gastrointestinal tract of rainbow trout, Oncorhynchus mykiss (Walbaum), and screening for inhibitory activity against Flavobacterium psychrophilum. J Fish Dis 35:809–816

    CAS  PubMed  Google Scholar 

  • Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19:21–41

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) HORMESIS: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197

    Article  CAS  PubMed  Google Scholar 

  • Chythanya R, Karunasagar I, Karunasagar I (2002) Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain. Aquaculture 208:1–10

    Article  Google Scholar 

  • De Smet I, Hoorde LV, Woestyne MV, Christiaens H, Verstraete W (1995) Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79:292–301

    Article  CAS  PubMed  Google Scholar 

  • Denison DA, Koehn RD (1977) Cellulase activity of Poronia oedipus. Mycologia 69:592–603

    Article  CAS  Google Scholar 

  • Dopazo C, Lemos M, Lodeiros C, Bolinches J, Barja J, Toranzo A (1988) Inhibitory activity of antibiotic producing marine bacteria against fish pathogens. J Appl Bacteriol 65:97–101

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Ghosh K (2015) Screening of extracellular enzyme-producing and pathogen inhibitory gut bacteria as putative probiotics in mrigal, Cirrhinus mrigala (Hamilton, 1822). Int J Fish Aquat Stud 2:310–318

    Google Scholar 

  • Dutta D, Banerjee S, Mukherjee A, Ghosh K (2015) Selection and probiotic characterization of exoenzyme-producing bacteria isolated from the gut of Catla catla (Actinopterygii: Cypriniformes: Cyprinidae). Acta Ichthyol Piscat 45:373–384

  • Eissa N, El-Gheit ESA, Shaheen AA (2014) Protective effect of Pseudomonas fluorescens as a probiotic in controlling fish pathogens. Am J BioSci 5:175–181

    Article  Google Scholar 

  • FAO (2000) The state of world fisheries and aquaculture. FAO, Rome

    Google Scholar 

  • Fjellheim AJ, Klinkenberg G, Skjermo J, Aasen IA, Vadstein O (2010) Selection of candidate probionts by two different screening strategies from Atlantic cod (Gadus morhua L.) larvae. Vet Microbiol 144:153–159

    Article  PubMed  Google Scholar 

  • Geraylou Z, Vanhove-Maarten PM, Souffreau C, Rurangwa E, Buyse J, Ollevier F (2014) In vitro selection and characterization of putative probiotics isolated from the gut of Acipenser baerii (Brandt, 1869). Aquac Res 45:341–352

    Article  Google Scholar 

  • Ghosh K, Sen SK, Ray AK (2002) Characterization of bacilli isolated from gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquac 12:33–42

    Article  Google Scholar 

  • Ghosh S, Sinha A, Sahu C (2007) Isolation of putative probionts from the intestines of Indian major carps. Isr J Aquacult Bamidgeh 59:127–132

    Google Scholar 

  • Ghosh K, Roy M, Kar N, Ringø E (2010) Gastrointestinal bacteria in rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): scanning electron microscopy and bacteriological study. Acta Ichthyol Piscat 40:129–135

    Article  Google Scholar 

  • Giri SS, Sukumaran V, Sen SS, Vinumonia J, Nazeema-Banu B, Jena PK (2011) Antagonistic activity of cellular components of potential probiotic bacteria, isolated from the gut of Labeo rohita, against Aeromonas hydrophila. Probiotics Antimicrob Prot 3:214–222

    Article  CAS  Google Scholar 

  • Giri SS, Sen SS, Sukumaran V (2012) Effects of dietary supplementation of potential probiotic Pseudomonas aeruginosa VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 32:1135–1140

    Article  CAS  PubMed  Google Scholar 

  • Gram LJ, Melchiorsen B, Spanggaard I, Huber T, Nielsen H (1999) Inhibition of Vibrio anguillarum by Pseudomonas fluorescens strain AH2 - a possible probiotic treatment of fish. Appl Environ Microbiol 65:969–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahem MD (2015) Evolution of probiotics in aquatic world: potential effects, the current status in Egypt and recent prospective. J Adv Res 6:765–791

    Article  PubMed  Google Scholar 

  • Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25:1–10

    Article  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14

    Article  Google Scholar 

  • Kinnear PR, Gray CD (2009) SPSS 17 made simple. Psychology Press, East Sussex

    Google Scholar 

  • Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Müller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912

    Article  CAS  PubMed  Google Scholar 

  • Krishnan R (2014) Probiotic potential of Bacillus species isolated from freshwater fish Anabas testudineus in Labeo rohita. Int J Multidiscip Res Dev 1(1):46–50

    Google Scholar 

  • Lalloo R, Moonsamy G, Ramchuran S, Görgens J, Gardiner N (2010) Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent. Lett Appl Microbiol 50:563–570

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Loh JY, Lim YY, Harmin SA, Ting ASY (2014) In vitro assessment on intestinal microflora from commonly farmed fishes for control of the fish pathogen Edwardsiella tarda. Turk J Vet Anim Sci 38:257–263

    Article  Google Scholar 

  • Lowry OH, Rosenbrough WJ, Fair HL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 195:265–275

    Google Scholar 

  • Luo Z, Bai XH, Chen CF (2014) Integrated application of two different screening strategies to select potential probiotics from the gut of channel catfish Ictalurus punctatus. Fish Sci 80(6):1269–1275

    Article  CAS  Google Scholar 

  • Majtán J, Černy J, Ofúkaná A, Takáč P, Kozánek M (2012) Mortality of therapeutic fish Garra rufa caused by Aeromonas sobria. Asian Pac J Trop Biomed 2:85–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Ghosh K (2013) Isolation of tannase-producing microbiota from the gastrointestinal tracts of some freshwater fish. J Appl Ichthyol 29:145–153

    Article  CAS  Google Scholar 

  • Maslow JN, Dawson D, Carlin EA, Holland SM (1999) Hemolysin as a virulence factor for systemic infection with isolates of Mycobacterium avium Complex. J Clin Microbiol 37:445–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Article  CAS  PubMed  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RR, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18

    Article  Google Scholar 

  • Mesalhy AS, Abd-El-Rahman AM, John G, Mohamed MF (2008) Characterization of some bacteria isolated from Oreochromis niloticus and their potential use as probiotics. Aquaculture 277:1–6

    Article  Google Scholar 

  • Moriarty DJW (1996) Microbial biotechnology, a key ingredient for suistainable aquaculture. INFO Fish Int 4:29–33

    Google Scholar 

  • Mukherjee A, Ghosh K (2016) Antagonism against fish pathogens by cellular components and verification of probiotic properties in autochthonous bacteria isolated from the gut of an Indian major carp, Catla catla (Hamilton). Aquac Res 47:2243–2255

    Article  Google Scholar 

  • Mukherjee A, Dutta D, Banerjee S, Einar R, Breines EM, Hareide E, Chandra G, Ghosh K (2016) Potential probiotics from Indian major carp, Cirrhinus mrigala. Characterization, pathogen inhibitory activity, partial characterization of bacteriocin and production of exoenzymes. Res Vet Sci 108:76–84

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, del Campo R, Hernández PE, Herranz C, Cintas LM (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13:1–22

    Article  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2012) Performance standards for antimicrobial disk susceptibility test; approved standard-ninth edition. Wayne: Clinical and Laboratory Standards Institute

  • Nikoskelainen S, Salminen S, Bylund G, Ouwehand AC (2001) Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67:2430–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurhidayu A, Ina-Salwany MY, Mohd-Daud H, Harmin SA (2012) Isolation, screening and characterization of potential probiotics from farmed tiger grouper (Epinephelus fuscoguttatus). Afr J Microbiol Res 6:1924–1933

    Article  CAS  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  CAS  PubMed  Google Scholar 

  • Pychyński T, Malanowska T, Kozłowski M (1981) Tło bakteryjne branchionekrozy karpi (bacterial aetiology in branchionecrosis of carp). Med Weter 37(12):742–743

    Google Scholar 

  • Ran C, Carrias A, Williams MA, Capps N, Dan BCT, Newton JC, Kloepper JW, Ooi EL, Browdy CL, Terhune JS, Liles MR (2012) Identification of Bacillus strains for biological control of catfish pathogens. PLoS One 7(9):e45793. doi:10.1371/journal.pone.0045793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18:465–492

    Article  CAS  Google Scholar 

  • Ringø E (2008) The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aquac Res 39:171–180

    Article  Google Scholar 

  • Ringø E, Strøm E, Tabachek JA (1995) Intestinal microflora of salmonids: a review. Aquac Res 26:773–789

    Article  Google Scholar 

  • Ringø E, Schillinger U, Holzapfel W (2005) Antibacterial abilities of lactic acid bacteria isolated from aquatic animals and the use of lactic acid bacteria in aquaculture. In: Holzapfel W, Naughton P (eds) Microbial ecology in growing animals. Elsevier, Edinburgh, pp 418–453

    Chapter  Google Scholar 

  • Ringø E, Sperstad S, Myklebust R, Mayhew TM, Olsen RE (2006) The effect of dietary inulin on bacteria associated with hindgut of Arctic charr (Salvelinus alpinus L.). Aquac Res 37:891–897

    Article  Google Scholar 

  • Robredo B, Singh KV, Baquero F, Murray BE, Torres C (2000) Vancomycin-resistant enterococci isolated from animals and food. Int J Food Microbiol 54:197–204

    Article  CAS  PubMed  Google Scholar 

  • Ross NW, Firth KJ, Wang A, Burka JF, Johnson SC (2000) Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis Aquat Org 41:43–51

    Article  CAS  PubMed  Google Scholar 

  • Sakata T (1990) Microflora in the digestive tract of fish and shell-fish. In: Lesel R (ed) Microbiology in Poecilotherms. Elsevier, Amsterdam, pp 171–176

    Google Scholar 

  • Salma W, Zhou Z, Wang W, Askarian F, Kousha A, Ebrahimi MT, Myklebust R, Ringø E (2011) Histological and bacteriological changes in intestine of beluga (Huso huso) following ex vivo exposure to bacterial strains. Aquaculture 314:24–33

    Article  Google Scholar 

  • Sánchez-Ortiz AC, Luna-González A, Campa-Córdova ÁI, Escamilla-Montes R, del Flores-Miranda MC, Mazón-Suástegui JM (2015) Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Lat Am J Aquat Res 43:123–136

    Article  Google Scholar 

  • Shenderov BA (2011) Probiotic (symbiotic) bacterial languages. Anaerobe 17:490–495

    Article  CAS  PubMed  Google Scholar 

  • Smith LS (1989) Digestive functions in teleost fishes. In: Halver JE (ed) Fish nutrition, Academic Press Inc., p 331–422

  • Talpur AD, Memon AJ, Khan MI, Ikhwanuddin M, Danish-Daniel MM, Abol-Munafi AB (2012) Isolation and screening of lactic acid bacteria from the gut of blue swimming crab, P pelagicus as in vitro inhibition assay and small scale in vivo model for validation of isolates as probiotics. J Fishery Aquat Sci 7:1–28

    Article  Google Scholar 

  • Vaughan EE, Heilig HG, Ben-Amor K, de Vos WM (2005) Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 29:477–490

    Article  CAS  PubMed  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231:145–152

    Article  CAS  PubMed  Google Scholar 

  • Wahli T, Burr SE, Pugovkin D, Mueller O, Frey J (2005) Aeromonas sobria, a causative agent of disease in farmed perch, Perca fluviatilis L. J Fish Dis 28:141–150

    Article  CAS  PubMed  Google Scholar 

  • Walter HE (1984) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 270–277

    Google Scholar 

  • Yanke LJ, Selinger LB, Cheng KJ (1999) Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett Appl Microbiol 29:20–25

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Pearson Education Singapore Pte. Ltd., New Delhi (Indian Branch)

    Google Scholar 

Download references

Acknowledgements

The first author is obliged to the DST-INSPIRE programme for the research fellowship. The authors are grateful to Head of Department of Zoology, The University of Burdwan, West Bengal, India; The University Grants Commission (UGC-SAP-DRS programme), New Delhi, India and The Department of Science and Technology (FIST programme), New Delhi, India for research support. The authors are grateful to Dr. G. Aditya for rendering help in statistical analyses of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Dutta, D., Banerjee, S. et al. Culturable autochthonous gut bacteria in rohu, Labeo rohita. In vitro growth inhibition against pathogenic Aeromonas spp., stability in gut, bio-safety and identification by 16S rRNA gene sequencing. Symbiosis 73, 165–177 (2017). https://doi.org/10.1007/s13199-017-0474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-017-0474-7

Keywords

Navigation