Skip to main content
Log in

Metabolic phenomics of bacterium Pantoea sp. from larval gut of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae)

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Gut bacterium Pantoea sp. is one of the predominant bacterial species in the larval gut of the diamondback moth, Plutella xylostella. The phenotypic characters of Pantoea sp. were investigated with BIOLOG phenotype MicroArray (PM) in this study. Totally 950 different metabolic phenotypes were tested using the PM plates 1–10. Results exhibited that Pantoea sp. was able to metabolize 37.37 % of the tested carbon sources, 91.32 % of nitrogen sources, 100 % of sulfur sources, and 98.31 % of phosphorus sources. Most informative utilization patterns for carbon sources of Pantoea sp. were organic acids and carbohydrates, and for nitrogen were various amino acids. The bacterium had 94 different biosynthetic pathways. It had a wide range of adaptabilities, and could still metabolize in osmolytes with up to 9 % sodium chloride, 6 % potassium chloride, 5 % sodium sulfate, 20 % ethylene glycol, 4 % sodium formate, 4 % urea, 5 % sodium lactate, 200 mmol/L sodium phosphate (pH 7.0), 100 mmol/L ammonium sulfate (pH 8.0), 100 mmol/L sodium nitrate, and 100 mmol/L sodium nitrite, respectively. It also exhibited active metabolism under pH values between 4.5 and 10. Pantoea sp. showed active decarboxylase activities while poor deaminase activities in the presence of various amino acids. The phenotypic characterization of Pantoea sp. increased our knowledge of the bacterium, in particular its interactions with insect hosts and the adaptability in gut environments, and showed us some possible approaches to controlling diamondback moth through decreasing Pantoea sp. density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bistolas KSI, Sakamoto RI, Fernandes JAM, Goffredi SK (2014) Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front Microbiol 5. doi:10.3389/fmicb.2014.00349

  • Bochner BR (2003) New technologies to assess genotype-phenotype relationships. Nat Rev Genet 4(4):309–314

    Article  CAS  PubMed  Google Scholar 

  • Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochner BR, Giovannetti L, Viti C (2008) Important discoveries from analysing bacterial phenotypes. Mol Microbiol 70(2):274–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture independent methods. Appl Environ Microbiol 70:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries EJ, Breeuwer JAJ, Jacobs G, Mollema C (2001) The association of western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: transient or permanent? J Invertebr Pathol 77:120–128

    Article  PubMed  Google Scholar 

  • Dillon RJ, Dillon VM (2003) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  Google Scholar 

  • Duron O, Noël V (2016) A wide diversity of Pantoea lineages are engaged in mutualistic symbiosis and cospeciation processes with stinkbugs. Environ Microbiol Rep. doi:10.1111/1758-2229.12432

    PubMed  Google Scholar 

  • Durso LM, Smith D, Hutikins RW (2004) Measurements of fitness and competition in commensal Escherichia coli and E. coli O157:H7 strains. Appl Environ Microbiol 70(11):6466–6472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedl MA, Kubicek CP, Druzhinina IS (2008) Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol 74(1):245–250

    Article  CAS  PubMed  Google Scholar 

  • Genta FA, Dillon RJ, Terra WR, Ferreira C (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 52:593–601

    Article  CAS  PubMed  Google Scholar 

  • Gong YJ, Wang ZH, Shi BC, Kang ZJ, Zhu L, Jin GH, Weig SJ (2013) Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. J Insect Sci 13:1–13

    Article  Google Scholar 

  • Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T (2016) Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol 1:1–7

    Article  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, Sa T (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbiol 103:2664–2675

    Article  CAS  PubMed  Google Scholar 

  • Iverson KL, Bromel MC, Anderson AW, Freeman TP (1984) Bacterial symbionts in the sugar beet root maggot, Tetanops myopaeformis (van Röder. Appl Environ Microbiol 47:22–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim Y (2010) A viral histone H4 suppresses expression of a transferring that plays a role in the immune response of the diamondback moth, Plutella xylostella. Insect Mol Biol 19(4):567–574

    CAS  PubMed  Google Scholar 

  • Kim JK, Choi SR, Lee J, Park SY, Song SY, Na J, Kim SW, Kim SJ, Nou IS, Lee YH, Park SU, Kim HR (2013) Metabolic differentiation of diamondback moth (Plutella xylostella (L.)) resistance in cabbage (Brassica oleracea L. ssp. capitata). J Agric Food Chem 61(46):11222–11230

  • Li WH, Jin DC, Jin JX, Chen Y, Li FL (2015) Isolation, identification and antibiotic susceptibility testing of gut bacteria from larval feces of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae. Acta Entomol Sin 58(5):546–552

    Google Scholar 

  • Li WH, Jin DC, Li FL, Jin JX, Cheng Y (2016) Phenotypic fingerprints of bacterium Erwinia persicina from larval gut of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae. Acta Entomol Sin 59(4):456–463

    Google Scholar 

  • Loncaric I, Heigl H, Licek E, Moosbeckhofer R, Busse HJ, Rosengarten R (2009) Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie 40(1):40–54

    Article  CAS  Google Scholar 

  • Martins S, Naish N, Walker AS, Morrison NI, Scaife S, Fu G, Dafa’alla T, Alphey L (2012) Germline transformation of the diamondback moth, Plutella xylostella L., using the piggyBac transposable element. Insect Mol Biol 21(4):414–421

    Article  CAS  PubMed  Google Scholar 

  • Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GVP, Guerrero A (2000) Pheromone-based integrated pest management to control the diamondback moth Plutella xylostella in cabbage fields. Pest Manag Sci 56(10):882–888

    Article  CAS  Google Scholar 

  • Shelton AM, Nault BA (2004) Dead-end trap cropping: a technique to improve management of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae. Crop Prot 23(6):497–503

    Article  Google Scholar 

  • Spiteller D, Dettner K, Boland W (2000) Gut bacteria may be involved in interactions between plants, herbivores and their predators: microbial biosyntheiss of N-acylgluta-mine surfactants as elicitors of plant volatiles. Biol Chem 381:755–762

    Article  CAS  PubMed  Google Scholar 

  • Talekar NS, Shelton AM (1993) Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38:275–301

    Article  Google Scholar 

  • Viti C, Decorosi F, Tatti E, Giovannetti L (2007) Characterization of chromate-resistant and -reducing bacteria by traditional means and by a high-throughput phenomic technique for bioremediation purposes. Biotechnol Prog 23:553–559

    Article  CAS  PubMed  Google Scholar 

  • Wang HC, Huang YF, Wang J, Wang MS, Xia HQ, Lu HX (2015a) Phenotypic fingerprints of Ralstonia solanacearum biovar 3 strains from tobacco and tomato in China assessed by Phenotype Micro Array analysis. Plant Pathol J 14(1):38–43

    Article  CAS  Google Scholar 

  • Wang HC, Huang YF, Xia HQ, Wang J, Wang MS, Zhang CQ, Lu HX (2015b) Phenotypic analysis of Alternaria alternata, the causal agent of tobacco brown spot. Plant Pathol J 14(2):79–85

    Article  Google Scholar 

  • Wu SF, HY Y, Jiang TT, Gao CF, Shen JL (2015) Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae): GPCRs in P. xylostella. Insect Mol Biol 24(4):442–453

    Article  CAS  PubMed  Google Scholar 

  • Xia XF, Zhen DD, Lin HL, You MS (2013a) Isolation and identification of bacteria from the larval midgut of the diamondback moth, Plutella xylostella. Chin J Appl Entomol 50(3):770–776

    CAS  Google Scholar 

  • Xia XF, Zheng DD, Zhong HZ, Qin BC, Gurr GM, Vasseur L, Lin HL, Bai JL, He WY, You MS (2013b) DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One 8(7): e68852

  • Xiang H, Huang YP (2008) Symbiosis between gut microbiota and insects. Chinese bulletin of. Entomology 45(5):687–693

    CAS  Google Scholar 

  • Xiang H, Wei GH, Jia S, Huang J, Miao XX, Zhou Z, Zhao LP, Huang YP (2006) Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera. Can J Microbiol 52:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Yang KQ, WW Q, Liu X, Liu HX, Hou LQ (2011) First report of Pantoea agglomerans causing brown apical necrosis of walnut in China. Plant Dis 95(6):773

    Article  Google Scholar 

  • You M, Yue Z, He W, Yang X, Yang G, Xie M, Zhan D, Baxter SW, Vasseur L, Gurr GM, Douglas CJ, Bai J, Wang P, Cui K, Huang S, Li X, Zhou Q, Wu Z, Chen Q, Liu C, Wang B, Li X, Xu X, Lu C, Hu M, Davey JW, Smith SM, Chen M, Xia X, Tang W, Ke F, Zheng D, Hu Y, Song F, You Y, Ma X, Peng L, Zheng Y, Liang Y, Chen Y, Yu L, Zhang Y, Liu Y, Li G, Fang L, Li J, Zhou X, Luo Y, Gou C, Wang J, Wang J, Yang H, Wang J (2013) A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet 45:220–225

    Article  CAS  PubMed  Google Scholar 

  • Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ (2012) Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J Econ Entomol 105(4):1115–1129

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Guizhou Excellent Scientists program in Agricultural Insects and Pest Management (ZYRC [2013] 010), Guizhou Science Technology Foundation ([2015] 2102), and Guizhou Academy of Agricultural Sciences Foundation ([2014]025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Chao Jin.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WH., Jin, DC., Li, FL. et al. Metabolic phenomics of bacterium Pantoea sp. from larval gut of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Symbiosis 72, 135–142 (2017). https://doi.org/10.1007/s13199-016-0453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0453-4

Keywords

Navigation