Skip to main content
Log in

Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The actinorhizal symbiosis is a mutualistic relationship between an actinobacterium from the genus Frankia and a wide variety of dicotyledonous plants representing 8 different families of angiosperms. Molecular phylogenetic approaches have identified four major Frankia lineages that have distinctive plant host ranges. Since the first published three Frankia genomes, an effort was undertaken to provide full genomic databases covering all four well established Frankia lineages and to provide depth of the number of strains covered. Here, we report on the updated status of these sequencing efforts. At present, there are 25 complete or draft Frankia genomes that have been sequenced and annotated, and several others are now in the pipeline being sequenced. An overview of the Frankia genomes will be presented focusing on their general genomic properties including size of the pan- and core-gene pool, size relationship and genome plasticity. Furthermore, a description of biosynthetic potential and a discussion about genes (nitrogenase, hopanoid biosynthesis, truncated hemoglobin, hydrogenase uptake gene clusters) involved in the symbiosis will be discussed. The absence of common nod genes within these Frankia genomes provides clues about the host-microbe recognition process for the actinorhizal symbiosis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alloisio N, Félix S, Maréchal J, et al. (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plantarium 130:440–453

    Article  CAS  Google Scholar 

  • Alloisio N, Queiroux C, Fournier P, et al. (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607

    Article  CAS  PubMed  Google Scholar 

  • Arnold W, Rump A, Klipp W, et al. (1988) Nucleotide sequence of a 24, 206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 203:715–738

    Article  CAS  PubMed  Google Scholar 

  • Baker D, Newcomb W, Torrey JG (1980) Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EuI1c (Actinomycetales). Can J Microbiol 26:1072–1089

    Article  CAS  PubMed  Google Scholar 

  • Baker E, Tang Y, Chu F, Tisa LS (2015) Molecular responses of Frankia sp. strain QA3 to naphthalene. Can J Microbiol 64:281–292

    Article  Google Scholar 

  • Bagnarol E, Popovici J, Alloisio N, et al. (2007) Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiol Plantarium 130:380–390

    Article  CAS  Google Scholar 

  • Beckwith J, Tjepkema JD, Cashon RE, Schwintzer CR, Tisa LS (2002) Hemoglobin in five genetically diverse Frankia strains. Can J Microbiol 48:1048–1055. doi:10.1139/W02-106

  • Benson DR, Brooks JM, Haubg Y, Bickart DM, Mastronunzio JE (2011) The biology of Frankia sp. strains in the post-genome era. Mol Plant Microbe Interact 24:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    Article  CAS  Google Scholar 

  • Berry AM, Moreau RA, Jones AD (1991) Bacteriohopanetetrol: abundant lipid in frankia cells and in nitrogen-fixing nodule tissue. Plant Physiol 95:111–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, et al. (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci 90:6091–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickhart DM, Gogarten JP, Lapierre P, Tisa LS, Normand P, Benson DR (2009) Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia. BMC Genomics 10:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Blin K, Medema MH, Kazempour D, et al. (2013) antiSMASH 2.0- averstile plstform for enome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212

    Article  PubMed  PubMed Central  Google Scholar 

  • Chabaud M, Pirolles E, Vaissayre V, et al. (2015) Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca2+ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. New Phytol. doi:10.1111/nph.13732

    PubMed  Google Scholar 

  • Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by actinorhizal root nodule endophyte Frankia. A Review. Symbiosis 51:201–226

    Article  Google Scholar 

  • Coats V, Schwintzer CR, Tjepkema JD (2009) Truncated hemoglobins in Frankia CcI3: effects of nitrogen source, oxygen concentration, and nitric oxide. Can J Microbiol 55:867–873

    Article  CAS  PubMed  Google Scholar 

  • Cournoyer B, Lavire C (1999) Analysis of Frankia evolution radiation using glnII sequences. FEMS Microbiol Lett 117:29–34

    Article  Google Scholar 

  • Darling AE, Man B, Perna NT (2010) Progressive Mauve: multiple genome aliganment with gene gain, loss and rearrangement. PLos ONE 5:e11147

  • Dobritsa SV, Potter D, Gookin TE, et al. (2001) Hopanoid lipids in Frankia: identification of squalene-hopene cyclase gene sequences. Can J Microbiol 47:535–540

    Article  CAS  PubMed  Google Scholar 

  • Furnholm T, Tisa LS (2014) The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics 15:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghinet MG, Bordeleau E, Beaudin J, Brzezinski R, Roy S, Burrus V (2011) Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS one 6: e27846

  • Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M (2010) 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60:487–495

    Article  CAS  PubMed  Google Scholar 

  • Ghodbhane-Gtari F, Beauchemin N, Bruce D, et al. (2013) Draft genome sequence of Frankia sp. strain CN3, an atypical, non-infective (nod) ineffective (fix) isolate from Coriaria nepalensis. Genome Announcement 1(2):00085–00013. doi:10.1128/genomeA.00085-13

    Google Scholar 

  • Ghodhbane-Gtari F, Hezbri K, Ktari A, et al (2014a) Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation. BioMed Res Int Article ID 568549, 8 pages. DOI:10.1155/2014/568549

  • Ghodhbane-Gtari F, Hurst SG IV, Oshone R, et al. (2014b) Draft genome sequence of Frankia sp. strain BMG5.23, a Salt-tolerant nitrogen-fixing actinobacterium isolated from the root nodules of Casuarina glauca grown in Tunisia. Genome Announcement 2(3):e00520–e00514. doi:10.1128/genomeA00520-14

    Article  Google Scholar 

  • Ghodhbane-Gtari F, Tisa LS (2014) Ecology and physiology of non-Frankia actinobacteria from actinorhizal plants. In: Chapter 4 in Plasticity in Plant-Growth-Promoting and Phytopathogenic Bacteria, E.I. Katsy (ED.). Springer, NY, pp. 27–42. doi:10.1007/978-1-4614-9203-0_2

    Chapter  Google Scholar 

  • Gtari M, Ghodhbane-Gtari F, Nouioui I, et al. (2015) Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Scientific. Reports 5:13112. doi:10.1038/srep13112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill DR, Belbin TJ, Thorsteinsson MV, Bassam D, et al. (1996) GlbN (cyanoglobin) is a peripheral membrane protein that is restricted to certain nostoc spp. J Bacteriol 178(22):6587–6598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst SG IV, Ghodhbane-Gtari F, Oshone R, et al. (2014) Draft genome sequence of Frankia sp. strain thr, a nitrogen-fixing actinobacterium isolated from the root nodules of Casuarina cunninghamiana grown in Egypt. Genome Announcement 2(3):e00493–e00414. doi:10.1128/genomeA.00493-14

    Article  Google Scholar 

  • Lee HI, Donati AJ, Hahn D, Tisa LS, Chang WS (2013) Alterations of the exopolysaccharide production and transcriptional profile of Frankia strain CcI3 under nitrogen-fixing conditions. Appl Microbiol Biotechnol 97:10499–10509

    Article  CAS  PubMed  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, et al. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  CAS  PubMed  Google Scholar 

  • Leul M, Normand P, Sellstadt A (2007) The organization, regulation and phylogeny of uptake hydrogenases genes in Frankia. Physiol Plant 130:464–470

    Article  CAS  Google Scholar 

  • Magallon S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard 86:297–372

    Article  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour SR, Oshone R, Hurst SG IV, et al. (2014) Draft genome sequence of Frankia sp. strain CcI6, a Salt-tolerant nitrogen-fixing actinobacterium isolated from the root nodule of Casuarina cunninghamiana. Genome Announcement 2(1):e01205–e01213. doi:10.1128/genomeA.01205-13

    Article  Google Scholar 

  • Markowitz VM, Korzeniewski F, Palaniappan K, et al. (2006) The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348. doi:10.1093/Nar/Gkj024

  • Mastronunzio J, Tisa LS, Normand P, Benson DR (2008) Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia. BMC Genomics 9:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Mastronunzio JE, Huang Y, Benson DR (2009) Diminished exoproteome of Frankia spp. in culture and symbiosis. Appl Environ Microbiol 75:6721–6728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastronunzio JE, Benson DR (2010) Wild nodules can be broken: proteomics of Frankia in field-collected root nodules. Symbiosis 50:13–26

    Article  CAS  Google Scholar 

  • Mattsson U, Sellstedt A (2000) Hydrogenase in Frankia KB5: expression of and relation to nitrogenase. Can J Microbiol 46:1091–1095

  • Medema MH, Blin K, Cimermancic P, et al. (2011) antiSMASH: rapid identification, annotation, and analysis of secondary metabolite biosynthetic gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michiels J, D'hooghe I, Verreth C, et al. (1994) Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression. Arch Microbiol 161:404–408

    Article  CAS  PubMed  Google Scholar 

  • Murry MA, Zhongze Z, Torrey JG (1985) Effect of O2 on vesicle formation, acetylene reduction, and O2-uptake kinetics in Frankia sp. HFPCcI3 isolated from Casuarina cunninghamiana. Can J Microbiol 31:804–809

    Article  CAS  PubMed  Google Scholar 

  • Nalin R, Putra SR, Domenach AM, Rohmer M, et al. (2000) High hopanoid/total lipids ratio in Frankia mycelia is not related to the nitrogen status. Microbiol 146:3013–3019

    Article  CAS  Google Scholar 

  • Niemann J, Tisa LS (2008) Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. J Bacteriol 190:7864–7867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann JM, Tjepkema JD, Tisa LS (2005) Identification of the truncated hemoglobin gene in Frankia. Symbiosis 39:91–95

    CAS  Google Scholar 

  • Noridge NA, Benson DR (1986) Isolation and nitrogen-fixing activity of frankia sp. strain CpI1 vesicles. J Bacteriol 166:301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normand P, Orso S, Cournoyer B, et al. (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, et al. (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Normand P, Benson DR, Berry AM, Tisa LS (2014) Family Frankiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (eds) The Prokaryote – Actinobacteria, 4th ed, Springer-Verlag Berlin Heidelberg, pp 339–356. DOI 10.1007/978–3-30138-4_183

  • Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M (2011) Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100:579–587

    Article  PubMed  Google Scholar 

  • Nouioui I, Beauchemin N, Cantor MN, et al. (2013) Draft genome sequence of Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils. Genome Announcement 1(4):e00468–e00413. doi:10.1128/genomeA00468-13

    Article  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

  • Oshone R, Hurst IV, Abebe-Akele F, et al. (2016) Permanent draft genome sequences for two variants of Frankia sp. strain CpI1, the first Frankia strain isolated from root nodules f Comptonia peregrina. Genome Announcement 4(1):e01588–e01515. doi:10.1128/genomeA01588-15

    Article  Google Scholar 

  • Ogasawara Y, Yackley BJ, Greenberg JA, Rogelj S, Melançon III CE (2015) Expanding our Understanding of Sequence-Function Relationships of Type II Polyketide Biosynthetic Gene Clusters: Bioinformatics-Guided Identification of Frankiamicin A from Frankia sp. EAN1pec PLoS ONE 10(4):e0121505

  • Perrine-Walker F, Doumas P, Lucas M, et al. (2010) Specific auxin carriers localization direct auxin accumulation in plants cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson T, Benson DR, Normand P, et al. (2011) Genome sequence of "Candidatus frankia datiscae" Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson T, Battenberg K, Demina IV, et al. (2015) Candidatus frankia datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS one 10:e0127630

    Article  PubMed  PubMed Central  Google Scholar 

  • Podell S, Gaasterland T (2007) DarkHorse: A method for genome-wide prediction of horizontal gene transfer. Genome Biol 8(2):R16

    Article  PubMed  PubMed Central  Google Scholar 

  • Popovici J, Comte G, Bagnarol É et al (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 762451–2460

  • Pujic P, Bolotin A, Fournier P et al (2015) Genome sequence of the atypical symbiotic Frankia R43 strain, a nitrogen-fixing and hydrogen-evolving actinobacterium. Genome Announcement 3(6):e01387–15. doi:10.1128/genomeA 01387–15

  • Rehan M, Kluge M, Franzle S, Kellner H, Ulrich R, Hofrichter M (2014a) Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 98:6125–6135

    Article  CAS  PubMed  Google Scholar 

  • Rehan M, Furnholm T, Finethy RH, Chu F, El Fadley G, Tisa LS (2014b) Copper tolerance by Frankia sp. strain EuI1c involves surface-binding and copper transport. Appl Microbiol Biotechnol 98:8005–8015

    Article  CAS  PubMed  Google Scholar 

  • Richards J, Krumholz G, Chval M, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richau KH, Kudahettige RL, Pujic P, et al. (2013) Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia. J Biosci 38:703–712

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M (2008) From molecular fossils of bacterial hopanoids to the formation of isoprene units: discovery and elucidation of the methylerythritol phosphate pathway. Lipids 43:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Schwencke J, Caru M (2001) Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res And Manag 15:285–327

    Article  CAS  Google Scholar 

  • Schwintzer CR, Tjepkema JD (2005) Effect of oxygen concentration on growth and hemoglobin production in Frankia. Symbiosis 39:77–82

  • Sen A, Sur S, Bothra AK, et al. (2008) The implication of life style on codon usage patterns and predicted highly expressed genes for three Frankia genomes. Antonie Van Leeuwenhoek 93:335–341

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Thakur S, Bothra AK, Sur S, Tisa LS (2012) Identification of TTA codon containing genes in Frankia and exploration of the role of tRNA in regulating these genes. Arch Microbiol 194:35–45

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Beauchemin N, Bruce D, et al. (2013) Draft genome sequence of Frankia sp. strain QA3, a nitrogen- fixing actinobacterium isolated from the root nodule of Alnus nitida. Genome Announcement 1(2):e00103–e00113. doi:10.1128/genomeA.00103-13

    Article  Google Scholar 

  • Setubal JC, dos Santos P, Goldman BS, et al. (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson E, Oshone R, Morris K, et al. (2015a) Draft genome sequence of Frankia sp. strain ACN1ag, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus glutinosa. Genome Announcement 3(6):e01483–e01415. doi:10.1128/genomeA.01483-15

    Google Scholar 

  • Swanson E, Oshone R, Simpson S, et al. (2015b) Permeant draft genome sequence of Frankia sp. strain AvcI1, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus viridis ssp. crispa grown in Canada. Genome Announcement 3(6):e01511–e01515. doi:10.1128/genomeA01511-15

    Google Scholar 

  • Tisa LS, Beauchemin N, Gtari M, Sen A, Wall LG (2013) What stories can the Frankia genomes start to tell us? J Biosci 38:719–726

    Article  PubMed  Google Scholar 

  • Tisa LS, Beauchemin N, Cantor MN, et al. (2015) Permanent draft genome sequence of Frankia sp. strain DC12, an atypical, non-infective (nod) ineffective (fix) isolate from Datisca cannabina. Genome Announcement 3(4):e00889–e00815. doi:10.1128/genomeA.00889-15

    Article  Google Scholar 

  • Tisa LS, Ensign JC (1987) Isolation and nitrogenase activity of vesicles of Frankia strain EAN1pec. J Bacteriol 169:5054–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjepkema JD, Cashon RE, Beckwith J, Schwintzer CR (2002) Hemoglobin in Frankia, a nitrogen-fixing actinomycete. Appl Environ Microbiol 68:2629–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udwary DW, Gontang EA, Jones AC, et al. (2011) Comparative genomic and proteomic analysis of the actinorhizal symbiont Frankia reveals significant natural product biosynthetic potential. Appl Environ Microbiol 77:3617–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M (2011) ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 12:R30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesth T, Lagesen K, Acar O, Ussery D (2013) CMG-biotools, a free workbench for basic comparative microbial genomics. PLoS one 8:e60120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall LG, Beauchemin N, Cantor MN, et al. (2013) Draft genome sequence of Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis. Genome Announcemnet 1(4):e00503–e00513. doi:10.1128/genomeA00503-13

    Google Scholar 

  • Wang Y, Ruby EG (2011) The roles of NO in microbial symbiosis. Cell Microbiol 13:518–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang L, Liu Z et al (2013) A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet, 9(10), e1003865

  • Wang SZ, Chen JS, Johnson JL (1988) The presence of five nifH-like sequences in Clostridium pasteurianum: sequence divergence and transcription properties. Nucleic Acids Res 16:439–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenberg JB, Bolognesi M, Wittenberg BA, and Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277:871–874

Download references

Acknowledgment

Partial funding was provided by the New Hampshire Agricultural Experiment Station. This is Scientific Contribution Number 2649. This work was supported by the USDA National Institute of Food and Agriculture Hatch 022821 (LST), Agriculture and Food Research Initiative Grant 2015-67014-22849 from the USDA National Institute of Food and Agriculture (LST), and the College of Life Science and Agriculture at the University of New Hampshire-Durham. MG and AK were supported by MERS research project no LR03ES03. AS acknowledges the grant received from Department of Biotechnology, Govt. of West Bengal (Project No. 206/BT-Estt./RD-22/2014) and DBT, India for allowing the work to be done at NBU bioinformatics Facility. IS was supported by a BSR, UGC Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis S. Tisa.

Additional information

Presented at the 18th International Meeting on Frankia and Actinorhizal Plants (ACTINO2015), August 24–27, 2015, Montpellier, France

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tisa, L.S., Oshone, R., Sarkar, I. et al. Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 70, 5–16 (2016). https://doi.org/10.1007/s13199-016-0390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0390-2

Keywords

Navigation