Skip to main content

Advertisement

Log in

Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Over the past several decades, we have come to appreciate that healthy plants host, within and on the surfaces of their tissues, endophytic and epiphytic fungi and bacteria that do not cause disease. Individual species (typically endophytes) of plants have been found to fall largely into one or more of three major functional groups: 1) Microbes that alleviate abiotic stress of the host; 2) Microbes that defend hosts from biotic stress (pathogens and herbivores); and 3) Microbes that support the host nutritionally through increased nitrogen, phosphorus, iron, etc. This functional aspect of plant microbiomes raises the potential to design and construct microbiomes for crop plants in order to enhance their cultivation with reduced agrochemical inputs and at lower cost. In order to design and construct functional microbiomes, we must first develop an understanding of the mechanisms by which plant microbiomes function. Examples of hypotheses for the abiotic stress tolerance mechanism include: 1) Oxidative stress protection by increased production of antioxidants produced either by the microbes or by hosts in response to microbes; 2) Ethylene reduction by production of ACC deaminase; and 3) Ammonia or ammonium detoxification and consequent oxidative stress avoidance. Mechanisms to explain biotic stress resistance generally include production of anti-herbivore or anti-pathogen defensive compounds by the microbe or by the host in response to the microbe (i.e., induced systemic resistance). Examples of hypothesized mechanisms to explain microbe-mediated enhanced plant growth include: 1) Stimulation of plant growth due to growth regulator production by microbes; 2) Increased absorption of nutrients by plants from the rhizosphere due to activities of microbes on roots; and 3) Increased supply of nitrogen obtained directly from diazotrophic microbes in plants. Factors by which plant endophyte communities are regulated are hypothesized to involve host-produced compounds that modify behavior of endophytic microbes, often reducing growth rates and suppressing pathogenic behaviors. These behavior-modifying compounds are proposed to include phenolic acids, quorum quenching compounds, and perhaps other secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi—a review. Med Mycol 50:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose K, Belanger F (2012) SOLID-SAGE analysis of endophyte-infected red fescue reveals numerous effects of host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS One 7(12):e53214. doi:10.1371/journal.pone.0053214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Article  Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A, Timper P, Nagabhyru P, Bacon CW (2009a) Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 99:1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Nagabhyru P, Bacon CW (2009b) Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids. J Chem Ecol 35:844–850

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon CW, Hinton DM, Mitchell TR, Snook ME, Olubajo B (2012) Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control 62:1–9

    Article  CAS  Google Scholar 

  • Baldanicteria JJ, Baldani VLD (2005) History of biological nitrogen fixation research in graminicolous plants: special emphasis on the Brazilian experience. Ann Brazil Acad Sci 77:549–579

    Article  Google Scholar 

  • Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by Enterobacter species. Appl Environ Microbiol 62:1448–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2. doi:10.1007/s00374-012-0756-4

    Article  Google Scholar 

  • Bassler BL (2002) Small talk. Cell-to-Cell communication Bacteria Cell 109:421–424

    CAS  PubMed  Google Scholar 

  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilizing microorganisms in mangrove—a review. Biocat Agricul Biotech 3:97–110

    Google Scholar 

  • Belesky DP, Bacon CW (2009) Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. Tox Rev 28:102–117

    Article  CAS  Google Scholar 

  • Beltran-Garcia M, White JF, Prado FM, Prieto KR, Yamaguchi LF, Torres MS, Kato MJ, Madeiros HG, Di Mascio P. 2014. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci Report 4: 6938. doi:1038/srep06938

  • Braeken K, Daniels R, Ndayizeye M, Vanderleyden J, Michiels J (2008) Quorum sensing in bacteria-plant interactions. In: Nautiyal CS, Dion JP (eds) Molecular mechanisms of plant and microbe coexistence. Soil Biology. Springer-Verlag, Berlin, pp. 265–289

    Chapter  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezael M-R, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11

    Article  CAS  Google Scholar 

  • Chen HM, Fujita Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101:5048–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke BB, White JF, Hurley RH, Torres MS, S. Sun, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease 90: 994–998

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • DaCosta M, Huang B (2006) Osmotic adjustment associated with variation in bentgrass tolerance to drought stress. J Amer Soc Hort Sci 131:338–344

    Google Scholar 

  • Dangeard PA (1900) Le Rhizophagus populinus. BotAniste 7:285–287

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dichtl K, Ebel F, Dirr F, Routier FH, Heesemann J, Wagener J (2010) Farnesol misplaces tip-localized Tho proteins and inhibits cell wall integrity signaling in Aspergillus fumigatus. Mol Microbiol 76:1191–1204

    Article  CAS  PubMed  Google Scholar 

  • Elmi AA, West CP (1995) Endophyte effects on tall fescue stomatal response, osmotic adjustment, and tiller survival. New Phytol 131:61–67

    Article  Google Scholar 

  • Freeman EM (1902) The seed fungus of Lolium temulentum L, the darnel. Philos Trans 196:1–29

    Article  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-luxl family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Contreras R, Maeda T, Wood TK (2013) Resistance to quorum-quenching compounds. Appl Environ Microbiol 79:6840–6846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godlewski M, Adamczyk B (2007) The ability of plants to secrete proteases by roots. Plant Physiol Biochem 45:657–664

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF (2014) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. doi:10.1016/j.micres.2014.11.004

    Article  PubMed  CAS  Google Scholar 

  • Gond SK, Torres MS, Bergen MS, Helsel Z, White JF (2015) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60:392–399. doi:10.1111/lam.12385

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen fixing rhizobia. Microbiol. Mol Biol Rev 67:574–592

    Article  CAS  Google Scholar 

  • Grangemard I, Bonmatin JM, Bermillon J, Das BC, Peypoux F (1999) Lichenysins G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: production, isolation and structural evaluation by NMR and mass spectrometry. J Anthropol 52:363–373

    CAS  Google Scholar 

  • Gwinn KD, Gavin AM (1992) Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Dis 76:911–914

    Article  Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P. 2014. Salinity stress and arbuscular mycorrhizal symbiosis in plants. Pp. 139–159, In: Use of Microbes for the Alleviation of Soil Stresses, vol. 1, Springer, New York. doi:10.1007/978–1-4614-9466-9-7.

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49

    Article  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Hank JM, Bessler BL (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 186:3794–37805

    Article  CAS  Google Scholar 

  • Harding MW, Marques LLR, Howard RJ, Olson ME (2009) Can filamentous fungi form Biofilms? Trends Microbiol 17:475–480

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Seelig J (2001) Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys J 81:1547–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryotic Cell 5:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Showmaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby JM, Jacobitz-kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW (2004) Inoculum size effect in dirmorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70:1356–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W-Y, Cai Y-Z, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • Jimenez R, Lopez-Sepulveda R, Romero M, Toral M, Cogolludo A, Perez-Vizcaino F, Duarte J (2015) Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Function 6:409–414

    Article  CAS  PubMed  Google Scholar 

  • Jourdan E, Henry G, Duby F., Dommes J, Barthelemy JP, Thonart P, Ongena M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22: 456–468.

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245

    Article  CAS  PubMed  Google Scholar 

  • Kiraly KA, Pilinszky K, Bittsanszky A, Gyulai G, Komives T. 2013. Importance of ammonia detoxification by plants in phytoremediation and aquaponics. Pp 99–102, In: Proceedings 12th Alps-Adria Scientific Workshop, suppl. doi:10.12666/Novenyterm. 62.2013.

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Koh C-L, Sam C-K, Yin W-F, Tan LY, Krishnan T, Chong YM, Chan K-G (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13:6217–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhizae. Mycorrhiza 14:145–163

    Article  PubMed  Google Scholar 

  • Koike S, Iizuka T, Mizutani J (1979) Determination of caffeic acid in the digestive juice of silkworm larvae and its antibacterial activity against the pathogenic streptococcus faecalis AD-4. Agric Biol Chem 43:1727–1731

    Article  CAS  Google Scholar 

  • Lee H, Chang YC, Nardone G, Kwon-Chung KJ (2007) TUP1 disruption in Cryptococcus neoformans uncovers a jpeptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 64:591–601

    Article  CAS  PubMed  Google Scholar 

  • Li C-J, Gao J-H, Nan Z-B (2006) Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant pathogenic fungi. Mycol Res 111:1220–1227

    Article  Google Scholar 

  • Lorek J, Poggeler S, Weige MR, Breves R, Bockmuhl DP (2008) Influence of farnesol on the morphogenesis of Aspergillus niger. J Basic Microbiol 48:99–103

    Article  PubMed  Google Scholar 

  • Lyons PC, Plattner RD, Bacon CW (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue. Science 232:487–489

    Article  CAS  PubMed  Google Scholar 

  • Malinowski MP, Belesky DP, Lewis GC (2005) Abiotic stresses in endophytic grasses. In: Roberts C, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses Blackwell publishing. Ames, Ohio, pp. 187–199

    Chapter  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean JC, Pierson LS, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Qurorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Moy M, Belanger F, Duncan R, Freehof A, Leary C, Meyer W, Sullivan R, White JF (2000) Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis 28:291–302

    Google Scholar 

  • Neill JC (1941) The endophytes of Lolium and Festuca. New Zealand J Sci Technol A 23:185–193

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Adam A, Jourdan E, Paquot M, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Pankievicz VCS, do Amaral FP, KFDN S, Agtuca B, Xu Y, Schueller MJ, ACM A, MBR S, de Souza EM, Pedrosa FO, Stacey G, Ferrieri RA (2015) Robust biological nitrogen fixation in a model grass-bacterial association. Plant Journal 81:907–919

    Article  CAS  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: as signaling mechanisms involved in associations with higher organisms. Proc Natl Acad Sci U S A 97:8789–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb R, Sagulenko E, Nasholm T, Schmidt S, Lonhienne T (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5(7):e11915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Schmidt S, Webb RI, Lonhienne T (2013) Rhizophagy-a new dimension of plant-microbe interactions. Pages 1199–1207. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Hoboken, NJ USA, Wiley-Blackwell. doi:10.1002/9781118297674.ch115

    Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance, and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    Article  CAS  PubMed  Google Scholar 

  • Persoh D (2015) Plant-associated fungal communities in the light of metagenomics. Fungal Divers. doi:10.1007/s13225-015-0334-9

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp. 179–197

    Chapter  Google Scholar 

  • Porter JK, Bacon CW, Robbins JD, Himmelsbach DS, Higman HC (1977) Indole alkaloids from Balansia epichloe (weese). J Agric Food Chem 25:88–93

    Article  CAS  Google Scholar 

  • Pratt SC (2005) Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behav Ecol 2:488–496. doi:10.1093/beheco/ari020

    Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    Article  CAS  Google Scholar 

  • Raina S, Odell M, Keshavarz T (2010) Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J Biotechnol 148:91–98

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Skindesoe ME, Bjarnsholt T. Phipps RK Christen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M. 2005b. Identify and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151: 1325–1340.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kistoffersen P, Kote M, Neilsen J, Eberl L, Givskov M (2005a) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phyt 168:305–312

    Article  CAS  Google Scholar 

  • Rice SA, McDougald D, Kumar N, Kjelleberg S (2005) The use of quorum sensing blockers as therapeutic agents for the control of biofilm-associated infection. Curr Opin Investig Drugs 6:178–184

    CAS  PubMed  Google Scholar 

  • Richardson MD, Chapman GW, Hoveland CS, Bacon CW (1992) Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci 32:1060–1061

    Article  CAS  Google Scholar 

  • Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4:911–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RK, Henson J, van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phyt 182:314–330

    Article  CAS  Google Scholar 

  • Rowen DD, Hunt MB, Gaynor DL (1986) Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. Chem Commun 1986:935–936

    Article  Google Scholar 

  • Saraf M, Jha CK, Patel D (2014) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp. 365–385. doi:10.1007/978-1-4614-9466-9-7

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Scultz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp. 1–10

    Chapter  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Seeley TD, Visscher PK (2006) Group decision-making in nest-site selection by honey bees. Apidologie 35:101–116. doi:10.1051/apido:2004004

    Article  Google Scholar 

  • Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Murray N, Harris SD (2008) Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiol Lett 279:259–264

    Article  CAS  PubMed  Google Scholar 

  • Shank EA, Kolter R (2009) New development in microbial interspecies signaling. Curr Opin Microbiol 12:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

  • Shea JM, Poeta MD (2006) Lipid signaling in pathogenic fungi. Curr Opin Microbiol 9:352–358

    Article  CAS  PubMed  Google Scholar 

  • Siegel MR, Latch GCM, Bush LP, Fammin NF, Rowen DD, Tapper BA, Bacon CW, Johnson MC (1991) Alkaloids and insecticidal activity of grasses infected with fungal endophytes. J Chem Ecol 16:3301–3315

    Article  Google Scholar 

  • Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57:4287–4292

    Article  CAS  PubMed  Google Scholar 

  • Spatafora JW, Sung GH, Sung JM, Hywel-Jones N, White JF (2007) Phylogenetic evidence for an animal pathogen origin of ergot and other grass endophytes. Mol Ecol 16:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Spratt DA, Daglia M, Papetti A, Stauder M, O’Donnell D (2012) Evaluation of plant and fungal extracts for their potential anti-gingivitis and anti-caries activity. J Biomed Biotechnol. doi:10.1155/2012/510198

    Google Scholar 

  • Stone JK, Bacon CW, White JW (2000) An overview of endophytic microbes: endophytism defined. In: Pp 3–30, in: bacon CW, white JF (ed) microbial endophytes -Dekker. York, New

    Google Scholar 

  • Tadych M, White JF (2007) Ecology of epiphyllous stages of endophytes and implications for horizontal dissemination. Proc 6th Inter Symp Fungal Endophytes Grasses, New Zealand Grass Association – Grassland Research and Practice Series 13: 157–161.

  • Tadych M, Vorsa N, Wang Y, Bergen MS, Johnson-Cicalese J, Polashock JJ, White JF (2015) Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi. Front Microbiol 6:835. doi:10.3389/fmicb.2015.00835

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Ishihara A, Nakajima H (2014) Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 bacillomycin D from Bacillus amyloliquefaciens SD-32 and their antifungal activities against plant pathogens. J Agric Food Chem 62:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Sekhar AC. 2014. Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AOB Plants 6:plu002. doi:10.193/aobpla/plu002.

  • Torres MS, White JF. 2009. Free-living and saprotrophs to plant endophytes. Pp 422–430, In: Schaechter M (ed) Encyclopedia of Microbiology, 3rd edn Oxford, Elsevier

  • Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205–216

    Article  CAS  PubMed  Google Scholar 

  • Visick KL, Fuqua C (2005) Decoding microbial chatter: cell-cell communication in bacteria. J Bacteriol 187:5507–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391. doi:10.1073/pnas.0504423102lish

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwater C, Balish E, Schofield DA (2005) Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryotic Cell 4:1654–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JF, Torres MS (2009) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138(4):440–446. doi:10.1111/j.1399-3054.2009.01332

    Article  PubMed  CAS  Google Scholar 

  • White JF, Bacon CW, Hywel-Jones NL (2003) In: Spatafora JW (ed) Clavicipitalean fungi. Marcel Dekker, Inc. NY

    Chapter  Google Scholar 

  • White JF, Crawford H, Torres MS, Mattera R, Irizarry I, Bergen MS (2012) A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis 57:61–171. doi:10.1007/s13199-012-01

    Article  CAS  Google Scholar 

  • White JF, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen MS (2014a) Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech 77:566–573

    Article  CAS  PubMed  Google Scholar 

  • White JF, Torres MS, Johnson H, Irizarry I (2014b) A functional view of plant microbiomes: endosymbiotic systems that enhance plant growth and survival. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer Verlag, Heidelberg, pp. 425–440

    Chapter  Google Scholar 

  • White JF, Torres MS, Sullivan RF, Jabbour RE, Chen Q, Tadych M, Irizarry I, Bergen MS, Havkin-Frenkel D, Belanger FC (2014c) Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids. Microsc Res Tech 77:874–885. doi:10.1002/jemt.22410

    Article  CAS  PubMed  Google Scholar 

  • White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M (2015) Collaboration Between grass Seedlings and Rhizobacteria to Scavenge Organic Nitrogen in Soils AoB Plants:01/2015. doi:10.1093/aobpla/plu093

  • Wiewióra B, Zurek G, Zurek M (2015) Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). Fungal Ecol 15:1–8

    Article  Google Scholar 

  • Zambell CB, White JF. 2014. In the forest vine Smilax rotundifolia, fungal epiphytes show site-wide spatial correlation, while endophytes show evidence of niche partitioning. Fungal Divers12/2014. doi:10.1007/s13225-014-0316-3.

  • Zarraonaindia I, Owens S, Welsenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich N, Mills D, Martin G, Taghavi S, van der Lelie D, Gilbert J. 2015. The soil microbiome influences grapevine-associated microbiota. mBio 6(2): e02527-14.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. White Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacon, C.W., White, J.F. Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 68, 87–98 (2016). https://doi.org/10.1007/s13199-015-0350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0350-2

Keywords

Navigation